精英家教网 > 高中数学 > 题目详情
10.用“五点法”画出函数y=cosx-1的简图.

分析 利用“五点法”即可作出函数y=cosx-1的图象.

解答 解:列表:

x0$\frac{π}{2}$π$\frac{3π}{2}$
cosx10-101
y=cosx-10-1-2-10
画图

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.△ABC中,已知sin2B+sin2C+sinBsinC=sin2A.
(Ⅰ)求角A的大小;
(Ⅱ)求2$\sqrt{3}$cos2$\frac{C}{2}$-sin($\frac{4π}{3}$-B)的最大值,并求取得最大值时角B、C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在非等腰△ABC中,A,B,C的对边分别是a,b,c,A+C=2B,2sinc-3sinA=sinB.
(1)求$\frac{c}{a}$的值;
(2)若△ABC的面积为6$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$则不等式xf(x+1)<x2-2的解集为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn,且对任意正整数n,都有Sn=$\frac{{a}_{n}-1}{λ}$(λ≠0.1).
(Ⅰ)求证:{an}为等比数列;
(Ⅱ)若λ=$\frac{1}{2}$,且bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=x2-4x+3在[0,a]的值域是[-1,3].实数a的取值范围记为集合A,g(x)=cos2x+$\frac{a}{2}$sinx.记g(x)的最大值为g(a).若g(a)≥b,对任意实数a∈A恒成立,则实数b的取值范围是b≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中.a1=$\frac{3}{5}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,则数列{an}的通项公式为an=$\frac{3}{6n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.y=kx+1在区间(-1,1)上恒为正数,则实数k的范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列的通项公式an=n(n-3),则180是它的第(  )项.
A.-12B.-15C.12D.15

查看答案和解析>>

同步练习册答案