精英家教网 > 高中数学 > 题目详情

已知A,B,C,D,E,F是边长为1的正六边形的6个顶点,在顶点取自A,B,C,D,E,F的所有三角形中,随机(等可能)取一个三角形.设随机变量X为取出三角形的面积.
(Ⅰ) 求概率P (X=数学公式);
(Ⅱ) 求数学期望E (X ).

解:(Ⅰ)由题意得取出的三角形的面积是的概率P(X=)==.…(7分)
(Ⅱ) 随机变量X的分布列为
X
P
所以E(X)=×+×+×=.…(14分)
分析:(Ⅰ)取出的三角形的面积是的三角形有6种情况,由此可得结论;
(Ⅱ)确定X的取值,求出相应的概率,从而可求数学期望.
点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算求解能力和应用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、给出如下四个命题:
①对于任意一条直线a,平面α内必有无数条直线与a垂直;
②若α、β是两个不重合的平面,l、m是两条不重合的直线,则α∥β的一个充分而不必要条件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四条不重合的直线,如果a⊥c,a⊥d,b⊥c,b⊥d,则“a∥b”与“c∥d”不可能都不成立;
④已知命题P:若四点不共面,那么这四点中任何三点都不共线.
则命题P的逆否命题是假命题上命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d都是正数,S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,则S的取值范围是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D四点不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,则四边形EFGH是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d是实数,用分析法证明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步练习册答案