在中,角所对的边分别为,已知,
(1)求的大小;
(2)若,求的周长的取值范围.
(1);(2).
解析试题分析:(1)本小题的突破口主要是抓住条件可使用正弦定理,得到,然后利用三角函数即可求得;(2)本小题首先通过正弦定理把三边用角表示出来,,然后把周长的问题转化为三角函数的值域求解问题;当然本小题也可采用余弦定理建立三边之间的关系,然后根据基本不等式求得,再根据三角形中两边之和大于第三边可得,于是,又,所以求得周长范围为.
试题解析:(1)由条件结合正弦定理得,
从而,
∵,∴ 5分
(2)法一:由正弦定理得:
∴,, 7分
9分
∵ 10分
∴,即(当且仅当时,等号成立)
从而的周长的取值范围是 12分
法二:由已知:,
由余弦定理得:
(当且仅当时等号成立)
∴(,又,
∴,
从而的周长的取值范围是 12分
考点:1 正弦定理;2 余弦定理;3 基本不等式
科目:高中数学 来源: 题型:解答题
钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.
(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com