精英家教网 > 高中数学 > 题目详情
16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

分析 由题意可得A(-a,0),B(a,0),C(0,b),求得P(2a,3b),再由两直线的夹角公式,运用直线的斜率公式,结合离心率公式计算即可得到所求值.

解答 解:由题意可得A(-a,0),B(a,0),C(0,b),
直线AC的方程为bx-ay+ab=0,
由x=2a,可得y=3b,即P(2a,3b),
则直线PB的斜率为k1=$\frac{3b}{a}$,
直线BC的斜率为k2=-$\frac{b}{a}$,
由BP平分角∠DBC,可得$\frac{3b}{a}$=$\frac{-\frac{b}{a}-\frac{3b}{a}}{1-\frac{3{b}^{2}}{{a}^{2}}}$,
化简可得7a2=9b2
由b2=a2-c2,可得2a2=9c2
则e=$\frac{c}{a}$=$\frac{\sqrt{2}}{3}$.
故答案为:$\frac{\sqrt{2}}{3}$.

点评 本题考查椭圆的方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在100$\sqrt{3}$m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°、60°,则塔高为(  )
A.$\frac{400}{3}$mB.$\frac{400\sqrt{3}}{3}$mC.$\frac{200\sqrt{3}}{3}$mD.$\frac{200}{3}$m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以A(3,2),B(1,4)所连线段为直径的圆的方程是(x-2)2+(y-3)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-alnx(x>0,a∈R)有两个零点x1,x2,且x1<x2
(1)求a的取值范围;
(2)证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在等差数列{an}中,a1,a2017为方程x2-10x+16=0的两根,则a2+a1009+a2016的值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y∈R+,x+y=1,则$\frac{x}{y}$+$\frac{1}{x}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2ax3+x2+2x+a.
(1)当a=0时,求函数的零点;
(2)证明对所有实数a,函数在区间(-1,1)上总有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有下列四个命题:
①y=2x与y=log2x互为反函数,其图象关于直线y=x对称;
②已知函数f(x-1)=x2-2x+1,则f(5)=26;
③当a>0且a≠1时,函数f(x)=ax-2-3必过定点(2,-2);
④函数y=($\frac{1}{2}$)x的值域是(0,+∞).
你认为正确命题的序号是①③④(把正确的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知{αn}是等差数列,且a5+a17=4,那么它的前21项之和等于    (  )
A.42B.40$\frac{1}{2}$C.40D.21

查看答案和解析>>

同步练习册答案