分析 (1)根据题意先求函数的导函数f′(x),令f′(x)>0,f′(x)<0,求出满足条件的范围,即可求出函数的单调区间;
(2)由(1)知,当x>0时,f(x)<f(0)=0,即ln(x+1)<x.由an=1+$\frac{1}{{2}^{n}}$ (n∈N+),令k=1,2,3,…,n,累加后,利用放缩法可得答案;
(3)令g(x)=$\frac{xf(x)+{x}^{2}}{x-1}$(x>2),求出g′(x)令h(x)=x-lnx-1,求出h′(x),根据函数的单调性求出k的最大值即可.
解答 解:(1)∵f(x)=lnx-x,
∴f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
∴f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).
证明:(2)由(1)知,当x≥1时,f(x)≤f(1)=-1,即lnx<x-1.
∵an=1+$\frac{1}{{2}^{n}}$(n∈N+),
∴lnak=ln(1+$\frac{1}{{2}^{k}}$)<$\frac{1}{{2}^{k}}$.
令k=1,2,3,…,n,这n个式子相加得:
lna1+lna2+lna3+…+lnan
<$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$,
即ln(a1a2a3•…•an)<1-$\frac{1}{{2}^{n}}$,
∴a1a2a3…an<${e}^{1-\frac{1}{{2}^{n}}}$<e,
∴a1a2a3…an<e;
解:(3)令g(x)=$\frac{xf(x)+{x}^{2}}{x-1}$=$\frac{xlnx}{x-1}$(x>2),则g′(x)=$\frac{x-lnx-1}{{(x-1)}^{2}}$,
令h(x)=x-lnx-1,则h′(x)=1-$\frac{1}{x}$>0,
故h(x)在(2,+∞)上单调递增,
而h(2)=1-ln2>0,
∴k≤1-ln2,
故k的最大值是1-2ln2.
点评 本题考查的知识点是数列与函数的综合,不等式的证明,恒成立问题,利用导数求函数的最值,综合性强,运算量大,转化困难,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | am>bm,则a>b | B. | a>b,则am>bm | C. | am2>bm2,则a>b | D. | a>b,则am2>bm2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -4 | B. | 0 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,3) | B. | (${\frac{3}{2}$,+∞) | C. | (-1,3) | D. | (3,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com