精英家教网 > 高中数学 > 题目详情

【题目】2022年第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学从全校学生中随机抽取了120名学生,对是否收看第23届平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

1)根据上表数据,能否有的把握认为,收看开幕式与性别有关?

2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动,若从这8人中随机选取2人到较广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率.

附:,其中.

P

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

【答案】1)有;(2

【解析】

1)根据列联表计算出,结合附表即可求解.

2)根据分层抽样可得选取的8人中,男生有6人,女生有2人,再利用组合式以及古典概型的概率计算公式即可求解.

1)因为

所以有的把握认为,收着开幕式与性别有关.

2)根据分层抽样方法得,

男生人,女生人,

所以选取的8人中,男生有6人,女生有2人,

再从这8人中,选取2人的所有情况共有种,

其中恰有一名男生一名女生的情况共有种,

所以,所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,其中.

(1)当时,写出函数的单调区间(不要求证明);

(2)若对于任意的,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)已知函数在点的切线与圆相切,求实数的值.

2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,.

1)若的中点,求证:

2)若二面角,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线方程.

(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;

(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售甲、乙两种商品所得利润分别是万元,它们与投入资金 万元的关系分别为,(其中都为常数),函数对应的曲线如图所示.

1)求函数的解析式;

2)若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的折线图是某超市2018年一月份至五月份的营业额与成本数据,根据该折线图,下列说法正确的是( )

A.该超市2018年的前五个月中三月份的利润最高

B.该超市2018年的前五个月的利润一直呈增长趋势

C.该超市2018年的前五个月的利润的中位数为0.8万元

D.该超市2018年前五个月的总利润为3.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从高三抽出名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:

1)这名学生成绩的众数与中位数;

2)这名学生的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

(1)求直方图中的值及续驶里程在的车辆数;

(2)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

同步练习册答案