精英家教网 > 高中数学 > 题目详情
4.${e^{-2}},{2^{\frac{1}{e}}},ln2$三个数中最大的数是${2^{\frac{1}{e}}}$.

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵e-2∈(0,1),${2}^{\frac{1}{e}}$>1,ln2∈(0,1),
因此三个数中最大的数是${2^{\frac{1}{e}}}$.
故答案为:${2^{\frac{1}{e}}}$.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求证:AC⊥PB;
(2)在侧棱PA上是否存在一点M,使得DM∥平面PCB?若存在,试给出证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(1+ax)+bx,g(x)=f(x)-bx2
(Ⅰ)若a=1,b=-1,求函数f(x)的单调区间;
(Ⅱ)若曲线y=g(x)在点(1,ln3)处的切线与直线11x-3y=0平行.
(i)  求a,b的值;
(ii)求实数k(k≤3)的取值范围,使得g(x)>k(x2-x)对x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,则这个几何体的直观图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分别为BC,AB中点.
(I)求证:MN∥平面PAC
(II)求证:平面PBC⊥平面PAM
(III)在AC上是否存在点E,使得ME⊥平面PAC,若存在,求出ME的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某四棱锥的三视图如右图所示,则该几何体的体积为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.2D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设集合A={x|x>0},B={x|-1<x≤2},则A∩B={x|0<x≤2}.

查看答案和解析>>

同步练习册答案