【题目】已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若,且对任意的,都有,求的取值范围.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)对a分和两种情况讨论,利用导数求函数的单调性;(Ⅱ)当时,由(Ⅰ)知在上单调递增,在上单调递减.再对a分三种情况讨论,利用导数研究不等式的恒成立问题得解.
(Ⅰ)函数的定义域为,.
(i)当时,恒成立,
∴在上单调递增.
(ii)当时,在上,在上,
∴在上单调递增,在上单调递减.
综上,当时,在上单调递增;当时,在上单调递增,在上单调递减.
(Ⅱ)当时,由(Ⅰ)知在上单调递增,在上单调递减.
①当,即时,在上单调递减,
,,解得.
∴.
②当,即时,在上单调递增,
,,解得.
∴.
③当,即时,在上单调递增,在上单调递减.
.
则,即.
令,,
易得,所以在上单调递增.
又∵,∴对任意的,都有.
∴.
综上所述,的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)讨论函数的单调性;
(2)定义:“对于在区域上有定义的函数和,若满足恒成立,则称曲线为曲线在区域上的紧邻曲线”.试问曲线与曲线是否存在相同的紧邻直线,若存在,请求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在满足下列三个条件的集合,,,则称偶数为“萌数”:
①集合,,为集合的个非空子集,,,两两之间的交集为空集,且;②集合中的所有数均为奇数,集合中的所有数均为偶数,所有的倍数都在集合中;③集合,,所有元素的和分别为,,,且.注:.
(1)判断:是否为“萌数”?若为“萌数”,写出符合条件的集合,,,若不是“萌数”,说明理由.
(2)证明:“”是“偶数为萌数”成立的必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(-1,2)且与两坐标轴的正半轴所围成的三角形面积等于.
(1)求直线l的方程.
(2)求圆心在直线l上且经过点M(2,1),N(4,-1)的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)
(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;
(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上动点到点的距离与到直线的距离之比为,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线的方程为.
①设直线与圆交于不同两点, ,求的取值范围;
②求与动直线恒相切的定椭圆的方程;并探究:若是曲线: 上的动点,是否存在直线: 恒相切的定曲线?若存在,直接写出曲线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线l的直角坐标方程;
(2)当时,求直线l与圆O公共点的一个极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com