精英家教网 > 高中数学 > 题目详情
(2005•温州一模)已知点A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q.
(1)证明点Q的轨迹是双曲线,并求出轨迹方程.
(2)若(
BQ
+
BA
)•
QA
=0
,求点Q的坐标.
分析:(1)由点Q在线段AP的垂直平分线上,知|QP|=|QA|,所以||BQ|-|PQ||=||BQ|-|AQ||=6.由此能求出点Q的轨迹方程.
(2)以A、B、Q为三个顶点作平行四边形ABQC,则
BQ
+
BA
=
BC
.由(
BQ
+
BA
)•
QA
=0
,知
BC
QC
=0
,所以平行四边形ABQC是菱形,由此能求出点Q的坐标.
解答:解:(1)∵点Q在线段AP的垂直平分线上,
∴|QP|=|QA|,
∴||BQ|-|PQ||=||BQ|-|AQ||=6.
∴点Q的轨迹是以A、B为焦点的双曲线.(4′)
其轨迹方程是
x2
9
-
y2
16
=1
.(7′)
(2)以A、B、Q为三个顶点作平行四边形ABQC,
BQ
+
BA
=
BC
(
BQ
+
BA
)•
QA
=0

BC
QC
=0

∴平行四边形ABQC是菱形,
|
BA
|=|
BQ
|
.(8′)
∴点Q在圆(x+5)2+y2=100上.
解方程组
(x+5)2+y2=100
x2
9
-
y2
16
=1
.(10′)
Q(-
39
5
,±
48
5
)
Q(
21
5
,±
8
6
5
)
.(12′)
点评:本题主要考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•温州一模)已知数列{an}各项均为正数,Sn为其前n项的和.对于任意的n∈N*,都有4Sn=(an+1)2
(1)求数列{an} 的通项公式.
(2)若2n≥tSn 对于任意的n∈N* 恒成立,求实数t 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)
lim
x→+∞
(
1
2
)x
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)已知直线l的方程是Ax+By+C=0,与直线l垂直的一条直线的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)用i表示虚数单位,则1+i+i2+…+i2005=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)已知{an}是等比数列,a2-a1=1,a5-a4=8,则{an}的公比是(  )

查看答案和解析>>

同步练习册答案