精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)当a=2时,求函数f(x)的最值;
(2)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a<

【答案】
(1)解:当a=2时,f(x)=lnx﹣2(x﹣1)的定义域为(0,+∞),

f′(x)= ﹣2=

当x∈(0, )时,f′(x)>0,当x∈( ,+∞)时,f′(x)<0,

即函数f(x)在(0, )上单调递增,在( ,+∞)上单调递减.

所以f(x)max=f( )=1﹣ln2,没有最小值


(2)解:证明:设切线l2的方程为y=k2x,切点为(x2,y2),则y2=

k2=g′(x2)= =

所以x2=1,y2=e,则k2=e.

由题意知,切线l1的斜率为k1= = ,l1的方程为y= x;

设l1与曲线y=f(x)的切点为(x1,y1),则k1=f′(x1)= ﹣a= =

所以y1= =1﹣ax1,a=

又因为y1=lnx1﹣a(x1﹣1),消去y1和a后,

整理得lnx1﹣1+ =0.

令m(x)=lnx﹣1+ =0,

则m′(x)= = ,m(x)在(0,1)上单调递减,在(1,+∞)上单调递增.

若x1∈(0,1),因为m( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),

而a= 在x1∈( ,1)上单调递减,所以 <a<

若x1∈(1,+∞),因为m(x)在(1,+∞)上单调递增,且m(e)=0,则x1=e,

所以a= =0(舍去).

综上可知, <a<


【解析】(1)当a=2时,f(x)=lnx﹣2(x﹣1)的定义域为(0,+∞),再利用导数求函数的单调区间,从而求解函数的最值;(2)设切线l2的方程为y=k2x,从而由导数及斜率公式可求得切点为(1,e),k2=e;再设l1的方程为y= x;设l1与曲线y=f(x)的切点为(x1 , y1),从而可得y1= =1﹣ax1 , a= ;结合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ =0,再令m(x)=lnx﹣1+ ,从而求导确定函数的单调性,从而确定 <a< ,问题得证.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.

x

6

8

10

12

y

2

3

5

6

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P0﹣1)是椭圆C1+=1ab0)的一个顶点,C1的长轴是圆C2x2+y2=4的直径,l1l2是过点P且互相垂直的两条直线,其中l1交圆C2AB两点,l2交椭圆C1于另一点D

1)求椭圆C1的方程;

2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函数f(x)有最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥P﹣ABCD中,四边形ABCD为正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分别为PD,CD,AD的中点, =3

(1)证明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

分类

积极参加

班级工作

不太主动参

加班级工作

总计

学习积极性高

18

7

25

学习积极性一般

6

19

25

总计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2﹣a2

(2)由(1)类比可得如下真命题:双曲线C:=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求异面直线AP与BC所成角的余弦值;
(II)求证:PD⊥平面PBC;
(II)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

同步练习册答案