精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c,满足f(1)=0
(1)若c=1,解不等式f(x)>0
(2)若a>b>c,设方程f(x)=0的最小根为x0,确定a,c的符号并求x0的取值范围.
分析:由f(1)=0得到a,b,c的关系.
(1)由c=1,把b用a表示,代入f(x)>0得到关于x的一元二次不等式,然后对参数a讨论求解不等式的解集;
(2)由a+b+c=0,a>b>c确定a,c的符号,把b=-a-c代入方程f(x)=0后求得x0=
c
a
,然后根据a,c的范围得到x0的范围.
解答:解:∵f(1)=0,∴a+b+c=0,
(1)∵c=1,∴b=-a-1,
由f(x)>0,得ax2-(a+1)x+1>0,
即(ax-1)(x-1)>0,
∵f(x)=ax2+bx+c为二次函数,
∴a≠0.
当0<a<1时,不等式解为(-∞,1)∪(
1
a
,+∞)

当a=1时,不等式解为(-∞,1)∪(1,+∞);
当a>1时,不等式解为(-∞,
1
a
)∪(1,+∞)

当a<0时,不等式解为(
1
a
,1)

(2)∵a+b+c=0,a>b>c,
∴a+b+c>c+c+c,
∴c<0,
∴a+b+c<a+a+a,
∴a>0,
故a>0,c<0,
∵f(x)=0,
∴ax2+bx+c=0,
∵a+b+c=0,
∴ax2-(a+c)x+c=0,
∴(x-1)(ax-c)=0,
∵a>0,c<0,∴x0=
c
a

∵a+b+c=0,a>b>c,
∴a>-a-c>c,
2a>-c
a<-2c

-2<
c
a
<-
1
2

x0∈(-2,-
1
2
)
点评:本题考查了含有参数的一元二次不等式的解法,考查了分类讨论的数学思想方法,考查了函数的零点与方程的根的关系,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案