精英家教网 > 高中数学 > 题目详情
11.下列否定不正确的是(  )
A.“?x∈R,x2>0”的否定是“?x0∈R,x02≤0”
B.“?x0∈R,x02<0”的否定是“?x∈R,x2<0”
C.“?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1”
D.“?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1

分析 根据全称命题和特称命题否定的方法,写出各个命题的否定,可得结论.

解答 解:“?x∈R,x2>0”的否定是“?x0∈R,x02≤0”,故A正确;
“?x0∈R,x02<0”的否定是“?x∈R,x2≥0”,故B错误;
“?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1”,故C正确;
“?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1,故D正确;
故选:B

点评 本题以命题的真假判断与应用为载体,考查了全称命题,特称命题的否定,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设f(x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(  )
A.(2,3)B.$(\root{3}{3},2)$C.$(\root{3}{4},2)$D.$(\root{3}{2},3)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=xlnx的单调递减区间为(  )
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知对任意x∈R,不等式$\frac{1}{{2}^{{x}^{2}+2x}}$>($\frac{1}{2}$)${\;}^{2{x}^{2}+m+4}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在调查中学生是否抽过烟的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你抽过烟吗?”然后要求被调查的中学生掷一枚质地均匀的骰子一次,如果出现奇数点,就回答第一个问题,否则回答第二个问题,由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题,如我们把这种方法用于300个被调查的中学生,得到80个“是”的回答,则这群人中抽过烟的百分率大约为13.33%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Sn,且Sn=$\frac{3}{2}$(bn-1),(n∈N+).
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l经过点(0,-2),其倾斜角的大小是60°,则直线l与两坐标轴围成三角形的面积S等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案