【题目】已知椭圆的左、右焦点为,左右两顶点,点为椭圆上任意一点,满足直线的斜率之积为,且的最大值为4.
(1)求椭圆的标准方程;
(2)若直线与过点且与轴垂直的直线交于点,过点作,垂足分别为两点,求证:.
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为,是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为.
(1)证明:直线的斜率为定值;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中,
(1)根据表中数据,求声音强度关于声音能量的回归方程;
(2)当声音强度大于60分贝时属于噪音,会产生噪声污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是和,且.已知点的声音能量等于声音能量与之和.请根据(1)中的回归方程,判断点是否受到噪声污染的干扰,并说明理由.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点为,左右两顶点,点为椭圆上任意一点,满足直线的斜率之积为,且的最大值为4.
(1)求椭圆的标准方程;
(2)已知直线与轴的交点为,过点的直线与椭圆相交与两点,连接点并延长,交轨迹于一点.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD为菱形,,侧面PAD与底面ABCD所成的角为,是等边三角形,点P到平面ABCD距离为.
(1)证明:;
(2)求二面角余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.
(1)求点的轨迹方程;
(2)设点的轨迹为曲线,直线过点且与交于两点,当与的面积之和取得最小值时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com