精英家教网 > 高中数学 > 题目详情
4.对定义在[1,+∞)上的函数f(x)和常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“凯森数对”.
(1)若(1,1)是f(x)的一个“凯森数对”,且f(1)=3,求f(16);
(2)已知函数f1(x)=log3x与f2(x)=2x的定义域都为[1,+∞),问它们是否存在“凯森数对”?分别给出判断并说明理由;
(3)若(2,0)是f(x)的一个“凯森数对”,且当1<x≤2时,f(x)=$\sqrt{2x-{x^2}}$,求f(x)在区间(1,+∞)上的不动点个数.

分析 (1)(1,1)是f(x)的一个“凯森数对,构造f(2n)=f(2n-1)+1,即可求出f(16),
(2)分别根据新定义,判断即可,
(3)当2n<x≤2n+1,则1<$\frac{x}{{2}^{n}}$≤2,根据题意可得当2n<x≤2n+1时,函数y=f(x)-x在区间(1,+∞)无零点,问题得以解决.

解答 解:(1)由题意,f(2x)=f(x)+1,且f(1)=3,则f(2n)=f(2n-1)+1,
则数列{f(2n)}成等差数列,公差为d=1,首项f(1)=3,
于是f(16)=7;
(2)对于函数f1(x)=log3x,定义域为[1,+∞),
∴log32x=alog3x+b,
∴log32+log3x=alog3x+b,
∴a=1,b=log32,
∴(1,log32)为函数f1(x)的一个“凯森数对,
对于函数f2(x)=2x,定义域为[1,+∞),
∴22x=a2x+b,
∴a=2x,b=0,
∴不存在“凯森数对“
(3)当2n<x≤2n+1,则1<$\frac{x}{{2}^{n}}$≤2,
则由题意得f(x)=2f($\frac{x}{2}$)=22f($\frac{x}{{2}^{2}}$)=…=2nf($\frac{x}{{2}^{n}}$)=2n
∴$\sqrt{\frac{2x}{{2}^{n}}-(\frac{x}{{2}^{n}})^{2}}$=$\sqrt{{2}^{n+1}•x-{x}^{2}}$,
由f(x)-x=0,得$\sqrt{{2}^{n+1}•x-{x}^{2}}$=x,
解得x=0,或x2=2n均不符合条件,
即当2n<x≤2n+1时,函数y=f(x)-x在区间(1,+∞)无零点,
由于(1,+∞)=(1,2]∪(2,22]∪…∪(2n,2n+1]…,
∴f(x)在区间(1,+∞)上无零点,
f(x)在区间(1,+∞)上的不动点个数为0个.

点评 本题考查利用新定义分析问题、解决问题的能力.考查转化计算,分类讨论、构造能力及推理论证能力,思维量大,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,且满足Sn+2an=3(n∈N*),设数列{bn}满足b1=a1,bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$(n≥2).
(1)求数列{an}、{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方形ABCD用斜二测画法得到的直观图为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=cos(ωx+\frac{π}{3})(ω>0)$,图象上任意两条相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调区间,对称中心;
(2)若关于x的方程2cos2x+mcosx+2=0在$x∈({0,\frac{π}{2}})$上有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|3-3x>0},则下列正确的是(  )
A.3∈AB.1∈AC.0∉AD.-1∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的是(  )
A.命题“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B.命题“若cosx=cosy,则x=y”的逆否命题是真命题:
C.命题“存在四边相等的四边形不是正方形”是假命题
D.命题”若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$,以坐标原点为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)+$\sqrt{2}$=0.
(1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;
(2)求曲线C1上的点到曲线C2的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC的三边分别为a,b,c.若a=2,b=3,c=4,则其最小角的余弦值为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\frac{cos(π-2α)}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin2α=$-\frac{3}{4}$.

查看答案和解析>>

同步练习册答案