£¨2013•×ÊÑôһģ£©ÔÚÊýÁÐ{an}ÖУ¬Èç¹û¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐ
an+2
an+1
-
an+1
an
=¦Ë
£¨¦ËΪ³£Êý£©£¬Ôò³ÆÊýÁÐ{an}Ϊ±ÈµÈ²îÊýÁУ¬¦Ë³ÆΪ±È¹«²î£®ÏÖ¸ø³öÒÔÏÂÃüÌ⣺
¢ÙÈôÊýÁÐ{Fn}Âú×ãF1=1£¬F2=1£¬Fn=Fn-1+Fn-2£¨n¡Ý3£©£¬Ôò¸ÃÊýÁв»ÊDZȵȲîÊýÁУ»
¢ÚÈôÊýÁÐ{an}Âú×ãan=(n-1)•2n-1£¬ÔòÊýÁÐ{an}ÊDZȵȲîÊýÁУ¬Çұȹ«²î¦Ë=2£»
¢ÛµÈ±ÈÊýÁÐÒ»¶¨ÊDZȵȲîÊýÁУ¬µÈ²îÊýÁв»Ò»¶¨ÊDZȵȲîÊýÁУ»
¢ÜÈô{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬ÔòÊýÁÐ{anbn}ÊDZȵȲîÊýÁУ®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ
¢Ù¢Û
¢Ù¢Û
£®
·ÖÎö£º¸ù¾Ý±ÈµÈ²îÊýÁеĶ¨Òå
an+2
an+1
-
an+1
an
=¦Ë
£¨¦ËΪ³£Êý£©£¬ÖðÒ»ÅжϢ١«¢ÜÖеÄËĸöÊýÁÐÊÇ·ñÊDZȵȲîÊýÁУ¬¼´¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£ºÊýÁÐ{Fn}Âú×ãF1=1£¬F2=1£¬F3=2£¬F4=3£¬F5=5£¬
F3
F2
-
F2
F1
=1£¬
F4
F3
-
F3
F2
=-
1
2
¡Ù1£¬Ôò¸ÃÊýÁв»ÊDZȵȲîÊýÁУ¬
¹Ê¢ÙÕýÈ·£»
ÈôÊýÁÐ{an}Âú×ãan=(n-1)•2n-1£¬Ôò
an+2
an+1
-
an+1
an
=
(n+1)•2n+1
n•2n
-
n•2n
(n-1)•2n-1
=
-2
(n-1)•n
²»Îª¶¨Öµ£¬¼´ÊýÁÐ{an}²»ÊDZȵȲîÊýÁУ¬
¹Ê¢Ú´íÎó£»
µÈ±ÈÊýÁÐ
an+2
an+1
-
an+1
an
=0£¬Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬ÈôµÈ²îÊýÁÐΪan=n£¬Ôò
an+2
an+1
-
an+1
an
=
-1
(n-1)•n
²»Îª¶¨Öµ£¬¼´ÊýÁÐ{an}²»ÊDZȵȲîÊýÁУ¬
¹Ê¢ÛÕýÈ·£»
Èç¹û{an}ÊǵȲîÊýÁУ¬{bn}ÊǵȱÈÊýÁУ¬Éèan=n£¬bn=2n£¬Ôò
an+2
an+1
-
an+1
an
=²»Îª¶¨Öµ£¬²»Âú×ã±ÈµÈ²îÊýÁеĶ¨Ò壬
¹Ê¢Ü²»ÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ù¢Û
µãÆÀ£º±¾Ì⿼²éж¨Ò壬½âÌâʱӦÕýÈ·Àí½âж¨Ò壬ͬʱעÒâÀûÓÃÁоٷ¨ÅжÏÃüÌâΪ¼Ù£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑôһģ£©ÃüÌâp£ºÊµÊýxÂú×ãx2-4ax+3a2£¼0£¨ÆäÖÐa£¾0£©£»ÃüÌâq£ºÊµÊýxÂú×ã
|x-1|¡Ü2
x+3
x-2
¡Ý0.

£¨¢ñ£©Èôa=1£¬ÇÒp¡ÄqΪÕ棬ÇóʵÊýxµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Èô?pÊÇ?qµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑôһģ£©Èôa£¾b£¾0£¬ÔòÏÂÁв»µÈʽһ¶¨²»³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑôһģ£©¼ÆË㣺(
1
8
)-
2
3
+(log29)•(log34)
=
8
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑôһģ£©º¯Êýf(x)=
x
x
-1
µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•×ÊÑôһģ£©ÒÑÖª¼¯ºÏA={x|-2£¼x£¼2}£¬¼¯ºÏB={x|1£¼x£¼3}£¬ÔòA¡ÉB=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸