£¨¢ñ£©¼Ç¡°¸ÃÉäÊÖÏò¼×°ÐÉä»÷Ò»´Î²¢»÷ÖС±ÎªÊ¼þA£¬
¡°¸ÃÉäÊÖÏòÒÒ°ÐÉä»÷Ò»´Î²¢»÷ÖС±ÎªÊ¼þB£¬
ÔòÓÉÌâÒâµÃ£¬
£¬
Óɸ÷´ÎÉä»÷½á¹û»¥²»Ó°ÏìµÃ
£¬
¼´
£¬
½âµÃ
p1=£¬p2=£®¡£¨3·Ö£©
£¨¢ò£©¦ÇµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬3£¬6£®¡£¨4·Ö£©
¼Ç¡°¸ÃÉäÊÖµÚi´ÎÉä»÷»÷ÖÐÄ¿±ê¡±ÎªÊ¼þA
i£¨i=1£¬2£¬3£©£¬
Ôò
P(¦Ç=0)=P()=(1-)3=£¬
P(¦Ç=1)=P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=
¡Á(1-)2+(1-)¡Á¡Á(1-)+(1-)2¡Á=£¬
P(¦Ç=2)=P(A1A3)=¡Á(1-)¡Á=£¬
P(¦Ç=3)=P(A1A2+A2A3)=P(A1A2)+P(A2A3)=()2¡Á(1-)+(1-)¡Á()2=£¬
P(¦Ç=6)=P(A1A2A3)=()3=£®
ËùÒԦǵķֲ¼ÁÐΪ£º
¡£¨9·Ö£©
£¨¢ó£©¿¼²ì²»µÈʽ
==•¡Ý1£¬
µÃk¡Ü£¨n+1£©p-1£®
¢ÙÈç¹û£¨n+1£©pÊÇÕýÕûÊý£¬ÄÇô£¨n+1£©p-1Ò²ÊÇÕýÕûÊý£®
´Ëʱ£¬¿ÉÒÔʹ£ºk=£¨n+1£©p-1£¬¼´k+1=£¨n+1£©p£¬
ÇÒP£¨X=k+1£©=P£¨X=k£©£®
Ôòµ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
¢ÚÈç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬ÄÇô²»µÈʽ
¡Ý1²»¿ÉÄÜÈ¡µÈºÅ£®
ËùÒÔ£¬¶ÔÈκÎk£¬P£¨X=k+1£©¡ÙP£¨X=k£©£®
ËùÒÔ£¬µ±k+1£¼£¨n+1£©pʱ£¬P£¨X=k+1£©£¾P£¨X=k£©£®
¼ÇСÓÚ£¨n+1£©pµÄ×î´óÕûÊýΪ[£¨n+1£©p]£¬
Ôòµ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®
×ÛÉÏ¿ÉÖª£¬Èç¹û£¨n+1£©pÊÇÕýÕûÊý£¬µ±kÈ¡£¨n+1£©p»ò£¨n+1£©p-1ʱ£¬P£¨X=k£©È¡×î´óÖµ£»
Èç¹û£¨n+1£©p²»ÊÇÕýÕûÊý£¬µ±k=[£¨n+1£©p]ʱ£¬P£¨X=k£©È¡×î´óÖµ£®¡£¨14·Ö£©