【题目】在高山滑雪运动的曲道赛项目中,运动员从高处(起点)向下滑,在滑行中运动员要穿过多个高约0.75米,宽4至6米的旗门,规定:运动员不经过任何一个旗门,都会被判一次“失格”,滑行时间会被增加,而所用时间越少,则排名越高.已知在参加比赛的运动员中,有五位运动员在滑行过程中都有三次“失格”,其中
(1)甲在滑行过程中依次没有经过,,三个旗门;
(2)乙在滑行过程中依次没有经过,,三个旗门;
(3)丙在滑行过程中依次没有经过,,三个旗门;
(4)丁在滑行过程中依次没有经过,,三个旗门;
(5)戊在滑行过程中依次没有经过,,三个旗门.
根据以上信息,,,,,,,,这8个旗门从上至下的排列顺序共有( )种可能.
A.6B.7C.8D.12
科目:高中数学 来源: 题型:
【题目】如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,,,直角梯形可以通过直角梯形以直线为轴旋转得到,且平面平面.
(1)求证:;
(2)设、分别为、的中点,为线段上的点(不与点重合).
(i)若平面平面,求的长;
(ii)线段上是否存在,使得直线平面,若存在求的长,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中函数,.
(1)求函数在点处的切线方程;
(2)当时,求函数在上的最大值;
(3)当时,对于给定的正整数,问:函数是否有零点?请说明理由.(参考数据,,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将数字1,2,3,…, ()全部填入一个2行列的表格中,每格填一个数字,第一行填入的数字依次为, ,…, ,第二行填入的数字依次为, ,…, .记.
(Ⅰ)当时,若, , ,写出的所有可能的取值;
(Ⅱ)给定正整数.试给出, ,…, 的一组取值,使得无论, ,…, 填写的顺序如何, 都只有一个取值,并求出此时的值;
(Ⅲ)求证:对于给定的以及满足条件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:是正实数,当时,,则称是“—数列”.
(1)若是“—数列”且,写出的所有可能值;
(2)设是“—数列”,证明:是等差数列当且仅当单调递减;是等比数列当且仅当单调递增;
(3)若是“—数列”且是周期数列(即存在正整数,使得对任意正整数,都有),求集合的元素个数的所有可能值的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合的元素均为实数,若对任意,存在,,使得且,则称元素个数最少的和为的“孪生集”;称的“孪生集”的“孪生集”为的“2级孪生集”;称的“2级孪生集”的“孪生集”为的“3级孪生集”,依此类推……
(1)设,直接写出集合的“孪生集”;
(2)设元素个数为的集合的“孪生集”分别为和,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为;
(3)若,请直接写出的“级孪生集”的个数,及所有“级孪生集”的并集的元素个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com