精英家教网 > 高中数学 > 题目详情
3.在△ABC中,已知AB=$\sqrt{2}$AC,∠B=30°,则∠A=(  )
A.45°B.15°C.45°或135°D.15°或105°

分析 由正弦定理可解得sinC,结合范围C∈(0,180°),可得C,利用三角形内角和定理即可求A的值.

解答 解:∵AB=$\sqrt{2}$AC,∠B=30°,
∴由正弦定理$\frac{AB}{sinC}=\frac{AC}{sinB}$,可得:sinC=$\frac{AB•sinB}{AC}$=$\frac{\sqrt{2}AC•\frac{1}{2}}{AC}$=$\frac{\sqrt{2}}{2}$,
∴由C∈(0,180°),可得:C=45°,或135°.
∴可得:A=180°-B-C=105°,或15°.
故选:D.

点评 本题主要考查了正弦定理,三角形内角和定理,正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ex-x的单调递增区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)解关于x不等式(x-a)(x-1)<0.
(2)证明:(x+y)($\frac{1}{x}$+$\frac{1}{y}$)≥4(其中x>0,y>0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线x2=-4y的焦点坐标为(  )
A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一长方体从一个顶点出发的三条棱长分别为3,$\sqrt{11}$,4,若该长方体的顶点都在一 个球的球面上,则这个球的体积为(  )
A.288πB.144πC.108πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A={x|a≤x≤2a-4},B={x|x2-5x-6<0},若A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}ccos{A}=asinC$.
(1)若4sinC=c2sinB,求△ABC的面积;
(2)若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}=4$,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}的前n项和为Sn,a5=6,S7=35,则数列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前100项和为$\frac{50}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组函数中,表示相等函数的是(  )
A.f(x)=$\sqrt{x}$,g(x)=($\sqrt{x}$)2
B.f(x)=2lgx,g(x)=lgx2
C.f(x)=$\sqrt{x-1}$$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$
D.f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{2,1<x<2}\\{3,x≥2}\end{array}\right.$,
xx≤11<x<2x≥2
g (x)123

查看答案和解析>>

同步练习册答案