精英家教网 > 高中数学 > 题目详情
4.比较loga3与loga10(a>0且a≠1)的大小.

分析 当0<a<1时,y=logax是减函数;当a>1时,y=logax是增函数.由此分类讨论,能比较loga3与loga10(a>0且a≠1)的大小.

解答 解:当0<a<1时,
∵y=logax是减函数,3<10,
∴loga3>loga10;
当a>1时,
∵y=logax是增函数,3<10,
∴loga3<loga10.

点评 本题考查两个对数值的大小的比较,是基础题,解题时要认真审题,注意对数性质和分类讨论思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知f(x)=ax,g(x)=loga|x|(a>0,且a≠1),若f(2014)•g(-2014)<0,则y=f(x)与y=g(x)在同一坐标系内的大致图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.空间四点A,B,C,D满足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=4,|$\overrightarrow{DA}$|=7,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项是3+2-1,6+4-1,9+8一1,12+16-1,…,则数列{an}的通项公式an=3×2n-1+2n-1,其前n项和Sn=5×2n-5-n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知全集U={2,3,5},集合A={2,|a-5|},∁UA={5}.求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy内,直线l的参数方程是$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.(t$为参数).以O为极点、x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴交于点M,点N在曲线C上,求M,N两点间距离|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.以平面直角坐标系的原点为极点,x 轴的正轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l的参数方程是$\left\{\begin{array}{l}{x=t+1}\\{y=t-2}\end{array}\right.$(t为参数),圆C的极坐标方程是ρ=4cosθ.
(1)求直线l和圆C的普通方程,
(2)求直线l被圆C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=90°,PA=PD=AD=2BC=2,CD=$\sqrt{2}$,N为线段CD的中点.
(1)若线段AB中点为E,试问线段PC上是否存在一点M使得ME∥平面PAD.若存在M点,设CM=kCP,求k的值.若不存在说明理由.
(2)求证:BD⊥PN;
(3)求三棱锥A-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当输入的x值为3时,如图的程序运行的结果等于(  )
A.-3B.3C.-2D.2

查看答案和解析>>

同步练习册答案