精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数在其定义域内为单调函数,求的取值范围;
(2)若函数的图象在处的切线的斜率为0,且, 已知,求证:
(1)的取值范围为 (2)同解析
(1)

要使函数在定义域内为单调函数,则在恒大于0或恒小于0,
内恒成立;
要使恒成立,则,解得
要使恒成立,则,解得
所以的取值范围为
(2)根据题意得:
于是
用数学归纳法证明如下:
,不等式成立;
假设当时,不等式成立,即也成立,
时,
所以当,不等式也成立
综上得对所有时,都有
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求证:函数上是增函数.
(Ⅱ)若上恒成立,求实数a的取值范围.
(Ⅲ)若函数上的值域是,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数:
(Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.
(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];
(Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 已知f(x)=定义在区间[-1,1]上,设x1x2∈[-1,1]且x1x2
求证: | f(x1)-f(x2)|≤| x1x2|

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的个数是(  )
①当a<0时,=a3 ②=|a| ③函数y=-(3x-7)0的定义域是(2, +∞) ④若,则2a+b=1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元。请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(I)当时,解不等式
(II)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若,求的值.
(2)若,求的单调的递减区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,则

查看答案和解析>>

同步练习册答案