精英家教网 > 高中数学 > 题目详情
3.直线y=x+m与椭圆$\frac{{x}^{2}}{2}$+y2=1相切,则m的值为$±\sqrt{3}$.

分析 直线与椭圆方程联立化为3x2+4mx+2m2-2=0,利用直线与椭圆相切可得:△=0,解出即可.

解答 解:联立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,化为3x2+4mx+2m2-2=0,
∵直线与椭圆相切可得:△=16m2-12(2m2-2)=0,
解得:$m=±\sqrt{3}$.
故答案为:±$\sqrt{3}$.

点评 本题考查了直线与椭圆相切的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.甲船在A处遇险,在甲船正西南10海里B处的乙船收到甲船的报警后,测得甲船是沿着方位角105°的方向,以每小时9海里的速度向某岛靠近.如果乙船要在40分钟内追上甲船,则乙船应以多少速度并沿什么方向航行?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在角①$\frac{π}{4}$;②-$\frac{5}{4}$π;③$\frac{19}{4}$π:④-$\frac{3}{4}$π中.终边相同的是②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)满足f(x+3)=f(x),且f(x)是奇函数,若f(1)=$\sqrt{2}$,则f(2006)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若平面上四点A,B,C,D满足任意三点不共线,且4$\overrightarrow{AC}$+2$\overrightarrow{AB}$=$\overrightarrow{AD}$.则$\frac{{S}_{△ABD}}{{S}_{△ABC}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\frac{2}{3}a{x}^{3}-a{x}^{2}+2x+10$是R上的增函数,则实数a的取值范围的是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设x+x-1=3,求下列各式的值,
(1)x2+x-2
(2)x3+x-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.a,b∈R+,证明不等式:$\sqrt{ab}$≤$\frac{a+b}{2}$.
引申:(1)a,b,c∈R+,求证:
①(a+1)(b+1)(b+c)(c+a)≥16abc;
②$\frac{b+c-a}{a}$+$\frac{c+a-b}{b}$+$\frac{a+b-c}{c}$≥3;
(2)a,b,c∈R+,a+b+c=1,求证:($\frac{1}{a}$-1)($\frac{1}{b}$-1)($\frac{1}{c}$-1)≥8;
(3)a,b∈R+,求证:$\frac{a}{\sqrt{b}}$+$\frac{b}{\sqrt{a}}$≥$\sqrt{a}$+$\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}}\right.$,则$\frac{y+1}{x-4}$的取值范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

同步练习册答案