精英家教网 > 高中数学 > 题目详情

【题目】a为实数,函数xR

(I)a=0时,求f(x)在区间[02]上的最大值和最小值

(Ⅱ)求函数f(x)的最小值

【答案】I见解析;II时, 的最小值为;当时, 的最小值为

【解析】试题分析:(Ⅰ)根据时, 上,取绝对值,根据二次函数的单调性即可求解在区间上的最大值和最小值;
(Ⅱ)利用零点分段去绝对值,根据对称轴分情况讨论即可求函数的最小值

试题解析:(I)当 时,函数

因为的图象抛物线开口向上,对称轴为

所以,当时, 值最小,最小值为

时, 值最大,最大值为3.

(II)①当时,函数.

,则上单调递减,在上的最小值为

,则函数上的最小值为

②当时, .

,则上的最小值为

,则上单调递增, .

所以,当时, 的最小值为.

时, 的最小值为.

时, 的最小值为中小者.所以,当时, 的最小值为;当时, 的最小值为.

综上,当时, 的最小值为;当时, 的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设正三棱锥A﹣BCD(底面是正三角形,顶点在底面的射影为底面中心)的所有顶点都在球O的球面上,BC=2,E,F分别是AB,BC的中点,EF⊥DE,则球O的表面积为( )
A.
B.6π
C.8π
D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+2ax﹣a﹣1,x∈[0,2],a为常数.
(1)用g(x)表示f(x)的最小值,求g(a)的解析式;
(2)在(1)中,是否存在最小的整数m,使得g(a)﹣m≤0对于任意a∈R均成立,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆轴相切于点,且圆心在直线上.

(Ⅰ)求圆的标准方程;

(II)设为圆上的两个动点, ,若直线的斜率之积为定值2,试探求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程.

(Ⅰ)若此方程表示圆,求的取值范围;

(Ⅱ)若(Ⅰ)中的圆与直线相交于 两点,且为坐标原点),求

(Ⅲ)在(Ⅱ)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为

(1)求圆的方程;

(2)若过点的直线与圆相交,所截得的弦长为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前个周需求量吨与的函数关系式为 为常数,且前4个周城区内汽车的汽油需求量为100.

1)试写出第个周结束时,汽油存储量吨)与的函数关系式;

(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且 =λ(0<λ<1).

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?

查看答案和解析>>

同步练习册答案