精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=log2(1+x2),
求证:
(1)函数f(x)是偶函数;
(2)函数f(x)在区间(0,+∞)上是增函数.

分析 (1)根据偶函数的定义,结合已知中函数的解析式,可得函数f(x)是偶函数;
(2)根据复合函数单调性“同增异减”的原则,结合二次函数和对数函数的单调性,可证得函数f(x)在区间(0,+∞)上是增函数.

解答 解:(1)∵函数f(x)=log2(1+x2)的定义域R关于原点对称,
且f(-x)=log2[1+(-x)2]=log2(1+x2)=f(x),
故函数f(x)是偶函数;
(2)当x∈(0,+∞),t=1+x2为增函数,
又由y=log2t也为增函数,
故函数f(x)在区间(0,+∞)上是增函数.

点评 本题考查的知识点是对数函数的图象和性质,函数的奇偶性,复合函数的单调性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知集合A={1,2,4},B={3,4},则A∪B={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0).左,右焦点分别为F1,F2,焦距为2.点M是椭圆C上一点,满足∠F1MF2=60°,且${S_{△{F_1}M{F_2}}}$=$\frac{{\sqrt{3}}}{3}$,
(Ⅰ)求椭圆的方程.
(Ⅱ)过点P(0,1)分别作直线PA,PB交椭圆C于A,B两点,设直线PA,PB的斜律分别为k1,k2,且k1+k2=2,求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=f(x)=($\frac{1}{3}$)|x+1|
(1)画出函f(x)的图象(简图);
(2)由图象指出函数(x)的单调区间;
(3)若曲线y=f(x)与直线y=b没有公共点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-x-6}$.
(1)若x∈[2,3],求该函数的最大值和最小值;
(2)求该函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.下列函数f(x)在x=0处是否连续?为什么?
(1)f(x)=$\left\{\begin{array}{l}{{x}^{2}sin\frac{1}{x},x≠0}\\{0,x=0}\end{array}\right.$;
(2)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{\frac{sinx}{x},x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-$\frac{1}{2}a{x}^{2}$+(a-1)x(a>0).
(1)求f(x)的单调区间;
(2)试问在函数f(x)的图象上是否存在A(x1,y1),B(x2,y2)(x1<x2),使得f(x)在x0=$\frac{{x}_{1}+{x}_{2}}{2}$处的切线l平行于AB,若存在,求出A,B点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x),g(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,g(x)有间断点,下列函数中必有间断点的为(  )
A.g[f(x)]B.[g(x)]2C.f[g(x)]D.$\frac{g(x)}{f(x)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-lnx.
(1)讨论f(x)的单调性;
(2)当f(x)有最小值,且最小值大于2-a时,求a的取值范围.

查看答案和解析>>

同步练习册答案