精英家教网 > 高中数学 > 题目详情
7.已知等比数列{an}的首项a1=1,公比为x(x>0),其前n项和为记为Sn,则函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$的解析式为$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

分析 当x=1时,Sn=n,可得函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$=$\underset{lim}{n→∞}\frac{n}{n+1}$.当0<x<1时,Sn=$\frac{{a}_{1}(1-{x}^{n})}{1-x}$,可得函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$=$\underset{lim}{n→∞}\frac{1-{x}^{n}}{1-{x}^{n+1}}$=1.当1<x时,同理可得.

解答 解:当x=1时,Sn=n,∴函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$=$\underset{lim}{n→∞}\frac{n}{n+1}$=1.
当0<x<1时,Sn=$\frac{{a}_{1}(1-{x}^{n})}{1-x}$,∴函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$=$\underset{lim}{n→∞}\frac{1-{x}^{n}}{1-{x}^{n+1}}$=1.
当1<x时,Sn=$\frac{{a}_{1}(1-{x}^{n})}{1-x}$,∴函数$f(x)=\lim_{n→∞}\frac{S_n}{{{S_{n+1}}}}$=$\underset{lim}{n→∞}\frac{1-{x}^{n}}{1-{x}^{n+1}}$=$\underset{lim}{n→∞}\frac{\frac{1}{{x}^{n}}-1}{\frac{1}{{x}^{n}}-x}$=$\frac{1}{x}$.
综上可得:$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.
故答案为:$f(x)=\left\{{\begin{array}{l}1&{0<x≤1}\\{\frac{1}{x}}&{x>1}\end{array}}\right.$.

点评 本题考查了等比数列的通项公式及其前n项和公式性质、极限的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知:a∈R,b∈R,若集合{a,$\frac{b}{a}$,1}={a2,a+b,0},则a2015+b2015的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}{x,-1≤x<0}\\{{x}^{2},0≤x<1}\end{array}\right.$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$.则方程f(x)=g(x)在区间[-3,7]上的所有实数根之和最接近下列哪个数(  )
A.10B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若${log_{\frac{4}{5}}}a$<1,则a的取值范围是($\frac{4}{5},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系中,已知两点A(x1,y1),B(x2,y2);x1,x2是一元二次方程2x2-2ax+a2-4=0两个不等实根,且A、B两点都在直线y=-x+a上.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)a为何值时$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列四个命题:
(1)若a>b,c>d,则a-d>b-c;
(2)若a2x>a2y,则x>y;
(3)a>b,则$\frac{1}{a-b}>\frac{1}{a}$;
(4)若$\frac{1}{a}<\frac{1}{b}<0$,则ab<b2
其中正确命题是(1)(2)(4).(填所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)当x>3时,求函数y=$\frac{2{x}^{2}}{x-3}$的最小值.
(2)若x2-2ax+2≥0在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若(1-ax)5的展开式中含有x3的系数为-80,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组中两个函数是同一函数的是(  )
A.f(x)=$\root{4}{{x}^{4}}$与g(x)=($\root{4}{x}$)4B.f(x)=x与g(x)=$\root{3}{{x}^{3}}$
C.f(x)=lnex与g(x)=elnxD.f(x)=$\frac{{x}^{2}-4}{x+2}$ 与g(x)=x-2

查看答案和解析>>

同步练习册答案