精英家教网 > 高中数学 > 题目详情
(本题满分12分),
如图,菱形ABCD所在平面与矩形ACEF所在平面互相垂直,已知BD=AF,且点M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求平面DEF与平面BEF所成的角.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
等边和梯形所在的平面相互垂直,,为棱的中点,∥平面.

(I)求证:平面平面
(II)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=
(Ⅰ)证明:CD⊥平面PAC
(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分) 如图,在四棱锥中,底面是边长为的正方形,侧面,且,若分别为的中点.
(1)求证:∥平面
(2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知四棱锥的底面是边长为2的菱形,且
(Ⅰ)若O是AC与BD的交点,求证:平面
(Ⅱ)若点的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在四棱锥中,底面是菱形,平面
分别为的中点,
(I)证明:平面
(II)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,四棱锥的底面ABCD是正方形,底面ABCD,E,F分别是AC,PB的中点.
(I)证明:平面PCD;
(Ⅱ) 若求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共12分)如图,在四棱锥P-ABCD中,底面ABCD为菱形, ,Q为AD的中点
(1) 若PA=PD,求证: 平面PQB平面PAD
(2)点M在线段PC上,PM=PC,试确定实数的值,使得PA//平面MQB

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:
(1)A1D与EF所成角的大小;
(2)A1F与平面B1EB所成角;
(3)二面角C-D1B1-B的大小.

查看答案和解析>>

同步练习册答案