精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在,使成立,则称的不动点.已知函数 .

1)当时,求函数的不动点;

2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;

3)在(2)的条件下,若的两个不动点为,且,求实数的取值范围.

【答案】(1)-1、4为的不动点;(2);(3.

【解析】

1)根据不动点定义得到方程,解方程求得结果;(2)将问题转化为恒有两个不等实根,利用判别式得到满足的不等式,将其看做关于的二次函数,可知当时,函数取最小值,从而得到关于的不等式,求解得到结果;(3)利用已知得到,根据对号函数的性质求得最值即可得到所求范围.

(1)由题意知:

为不动点,因此

解得:

所以的不动点.

(2)因为恒有两个不动点

恒有两个不等实根

整理为: 恒成立

即对于任意恒成立

,则

,解得:

(3)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线(b>a>0),O为坐标原点,离心率,点在双曲线上.

(1)求双曲线的方程;

(2)若直线与双曲线交于P、Q两点,且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3x,f(a+2)=27,函数g(x)·2ax-4x的定义域为[0,2].

(1)a的值;

(2)若函数g(x)[0,2]上单调递减,λ的取值范围;

(3)若函数g(x)的最大值是,λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体的顶点和各棱中点共有10个点,在其中任取4个不共面的点,不同的取法有__用数字作答

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵A的逆矩阵A1=( ).
(1)求矩阵A;
(2)求矩阵A1的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

支持

不支持

总计

男性市民

女性市民

总计

(1)根据已知数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过的前提下认为支持申办年足球世界杯与性别有关?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为(
A.5或8
B.﹣1或5
C.﹣1或﹣4
D.﹣4或8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关线性回归分析的四个命题:

①线性回归直线必过样本数据的中心点();

②回归直线就是散点图中经过样本数据点最多的那条直线;

③当相关性系数时,两个变量正相关;

④如果两个变量的相关性越强,则相关性系数就越接近于

其中真命题的个数为(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案