【题目】已知椭圆C:()的左、右顶点分别为A,B,左焦点为F,O为原点,点P为椭圆C上不同于A、B的任一点,若直线PA与PB的斜率之积为,且椭圆C经过点.
(1)求椭圆C的方程;
(2)若P点不在坐标轴上,直线PA,PB交y轴于M,N两点,若直线OT与过点M,N的圆G相切.切点为T,问切线长是否为定值,若是,求出定值,若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy下,曲线C1的参数方程为( 为参数),曲线C1在变换T:的作用下变成曲线C2.
(1)求曲线C2的普通方程;
(2)若m>1,求曲线C2与曲线C3:y=m|x|-m的公共点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.
(Ⅰ)若点P在椭圆C的内部,求直线AM的斜率的取值范围;
(Ⅱ)设椭圆C的右焦点为F,点Q在y轴上,且∠PFQ=90°,求证:AQ∥BM.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】同程旅游随机调查了年龄在(单位:岁)内的1250人的购票情况,其中50岁以下(不包含50岁)的有900人,50岁以上(包含50岁)的有350人,由调查数据的统计结果显示,有的人参与网上购票,网上购票人数的频率分布直方图如下图所示.
(1)已知年龄在,,的网上购票人数成等差数列,求的值;
(2)根据题目数据填写列联表,并根据填写数据判断能否在犯错误的概率不超过0.001的前提下,认为网上购票与年龄有关系?
50岁以下 | 50岁以上 | 总计 | |
参与网上购票 | |||
不参与网上购票 | |||
总计 |
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
(3)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取10人,并在这10人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线的方程为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l和曲线的极坐标方程;
(2)曲线分别交直线l和曲线于点A,B,求的最大值及相应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.
(1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)若曲线在处的切线与曲线相切,求的值;
(2)当时,函数的图象恒在函数的图象的下方,求的取值范围;
(3)若函数恰有2个不相等的零点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com