精英家教网 > 高中数学 > 题目详情
设抛物线x2=2py(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,分别过A、B两点作抛物线的两条切线交于点C,则有(  )
A、
AC
?
BC
=0
B、
AC
?
BC
>0
C、
AC
?
BC
<0
D、
AC
?
BC
≠0
分析:设出过点F的直线方程,和抛物线方程联立后由根与系数关系得到两交点的横纵坐标的和与积,把抛物线所对应的函数求导后得到A,B两点处的切线的斜率,由点斜式得到过A,B两点的切线方程,由两切线方程联立求得C点的坐标,代入
AC
BC
可得结论.
解答:解:∵F(0,
p
2
),又依题意直线l不与x轴垂直,∴设直线l的方程为y=kx+
p
2

y=kx+
p
2
x2=2py
,可得x2-2pkx-p2=0.
设A(x1,y1),B(x2,y2),则x1+x2=2pk,x1x2=-p2
y1+y2=k(x1+x2)+p=2pk2+p
y1y2=(kx1+
p
2
)(kx2+
p
2
)=k2x1x2+
kp
2
(x1+x2)+
p2
4

=-k2p2+k2p2+
p2
4
=
p2
4

由x2=2py,可得y=
x2
2p
,∴y′=
x
p

∴抛物线在A,B两点处的切线的斜率分别为
x1
p
x2
p

∴在点A处的切线方程为y-y1=
x1
p
(x-x1),
y=
x1
p
x-
x12
2p

同理在点B处的切线方程为y=
x2
p
x-
x22
2p

解方程组
y=
x1
p
x-
x12
2p
y=
x2
p
x-
x22
2p
,可得
x=pk
y=-
p
2

∴点C的坐标为(pk,-
p
2
)

AC
BC
=(pk-x1,-
p
2
-y1)•(pk-x2,-
p
2
-y2)

=p2k2-pk(x1+x2)+x1x2+
p2
4
+
p
2
(y1+y2)+y1y2

=p2k2-pk•2pk-p2+
p2
4
+
p
2
•(2pk2+p)
+
p2
4
=0.
故选:A.
点评:本题考查了直线与圆锥曲线的关系,考查了平面向量的数量积运算,涉及直线与圆锥曲线的关系问题,常采用联立方程组,化为关于x的方程后利用一元二次方程根与系数的关系解决,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.
(1)求弦长MN;
(2)设AM=l1,AN=l2,求
l1
l2
+
l2
l1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州二模)如图,已知直线y=2x-2与抛物线x2=2py(p>0)交于M1,M2两点,直线y=
p
2
与y轴交于点F.且直线y=
p
2
恰好平分∠M1FM2
(I)求P的值;
(Ⅱ)设A是直线y=
p
2
上一点,直线AM2交抛物线于另点M3,直线M1M3交直线y=
p
2
于点B,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.求证:A,M,B三点的横坐标成等差数列.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌市高三第二次模拟测试理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=

(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论

(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.

 

查看答案和解析>>

同步练习册答案