精英家教网 > 高中数学 > 题目详情

【题目】如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为,设∠AOE=,探照灯O照射在长方形ABCD内部区域的面积为S.

(1)当0时,写出S关于的函数表达式;

(2)若探照灯每9分钟旋转“一个来回”(OEOA转到OC,再回到OA,称“一个来回”,忽略OEOAOC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG,求点G在“一个来回”中,被照到的时间.

【答案】(1),S(2)2分钟

【解析】

(1) 根据AD=2AB=10≤,确定点EF的位置,分0≤,两种情况,利用三角形面积公式求解.

(2)先得到一个来回中,OE共转了2,其中点G被照到时,共转了2,再利用角度关系求解.

如图所示:

(1)OOHBCH为垂足.

①当0≤时,E在边AB上,F在线段BH(如图①)

此时,AE=tanFH=tan()

S=S正方形OABHSOAESOHF=1tantan().

②当时,

E在线段BH上,F在线段CH(如图②)

此时,EHFH,可得EF.

S=SOEF().

综上所述,S

(2)一个来回中,OE共转了2

其中点G被照到时,共转了2

∴在一个来回中,点G被照到的时间为92(分钟).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线经过点.

(1)证明:

(2)若当时, ,求的取值范围.

【答案】(1)证明见解析;(2) .

【解析】试题分析:(1先根据导数几何意义得切线斜率为,再根据切线过点,解得导数可得导函数零点,列表分析导函数符号变号规律可得函数单调性,根据函数单调性可得函数最小值为0,即得结论,2先化简不等式为,分离得,再利用导数求函数单调性,利用罗伯特法则求最大值,即得的取值范围.

试题解析:(1)曲线处的切线为,即

由题意得,解得

所以

从而

因为当时, ,当时, .

所以在区间上是减函数,区间上是增函数,

从而.

(2)由题意知,当时, ,所以

从而当时,

由题意知,即,其中

,其中

,即,其中

,其中

(1)当时,因为时, ,所以是增函数

从而当时,

所以是增函数,从而.

故当时符合题意.

(2)当时,因为时,

所以在区间上是减函数

从而当时,

所以上是减函数,从而

故当时不符合题意.

(3)当时,因为时, ,所以是减函数

从而当时,

所以是减函数,从而

故当时不符合题意

综上的取值范围是.

型】解答
束】
22

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),曲线 .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.

1)求曲线的极坐标方程;

2)射线)与曲线的异于极点的交点为,与曲线的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的中点.

1)若,求向量与向量的夹角的余弦值;

2)若是线段上任意一点,且,求的最小值;

3)若点内一点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线与圆相交于不同的两点,点是线段的中点。

(1)求直线的方程;

(2)是否存在与直线平行的直线,使得与与圆相交于不同的两点不经过点,且的面积最大?若存在,求出的方程及对应的的面积S;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的导数,若存在,使得成立,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数函数gx=1ogaxa0a≠1)和指数函数fx=axa0a≠1)互为反函数.已知函数fx=3x,其反函数为y=gx).

(Ⅰ)若函数gkx2+2x+1)的定义域为R,求实数k的取值范围;

(Ⅱ)若0x1x2|gx1|=|gx2|,求4x1+x2的最小值;

(Ⅲ)定义在I上的函数Fx),如果满足:对任意xI,总存在常数M0,都有-MFx)≤M成立,则称函数Fx)是I上的有界函数,其中M为函数Fx)的上界.若函数hx=,当m≠0时,探求函数hx)在x[01]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】m为何值时,.

(1)有且仅有一个零点;

(2)有两个零点且均比-1大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)当时,求曲线在点处的切线方程;

2时,求在区间上的最大值和最小值;

3)当时,若方程在区间上有唯一解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

同步练习册答案