£¨2013•·¿É½Çøһģ£©¶ÔÓÚʵÊýx£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺţ¼x£¾±íʾ£®Àý£¼1.2£¾=0.2£¬£¼-1.2£¾=0.8£¬£¼
8
7
£¾=
1
7
£®¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1=£¼a£¾£¬an+1=
£¼
1
an
£¾ an¡Ù0
0        an=0
£¬ÆäÖÐn=1£¬2£¬3£¬¡­£®
£¨¢ñ£©Èôa=
2
£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©µ±a£¾
1
4
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨¢ó£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p
q
 £¨pÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p£¬q»¥ÖÊ£©£¬¶ÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨I£©ÀûÓÃж¨Ò壬¿ÉÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©·ÖÀàÌÖÂÛ£¬ÀûÓÃn=a£¬¼´¿ÉÇó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨¢ó£©ÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬¿ÉÉèan=
pn
qn
£¨pnÊǷǸºÕûÊý£¬qnÊÇÕýÕûÊý£¬ÇÒpn£¬qn»¥ÖÊ£©£¬ÀûÓ÷´Ö¤·¨¿ÉµÃ½áÂÛ£®
½â´ð£º£¨¢ñ£©½â£ºa1=?
2
£¾=
2
-1
£¬a2=?
1
a1
£¾=?
1
2
-1
£¾=?
2
+1£¾=
2
-1
¡­£®£¨2·Ö£©
Èôak=
2
-1
£¬Ôòak+1=[
1
ak
]=[
2
+1]=
2
-1

ËùÒÔan=
2
-1
¡­£¨3·Ö£©
£¨¢ò£©½â£º¡ßa1=?a£¾=a£¬a£¾
1
4
ËùÒÔ
1
4
£¼a£¼1
£¬´Ó¶ø1£¼
1
a
£¼4

¢Ùµ±
1
2
£¼a£¼1
£¬¼´1£¼
1
a
£¼2
ʱ£¬a2=?
1
a1
£¾=?
1
a
£¾=
1
a
-1=a

ËùÒÔa2+a-1=0
½âµÃ£ºa=
-1+
5
2
£¬£¨a=
-1-
5
2
∉(
1
2
£¬1)
£¬ÉáÈ¥£©         ¡­£®£¨4·Ö£©
¢Úµ±
1
3
£¼a¡Ü
1
2
£¬¼´2¡Ü
1
a
£¼3
ʱ£¬a2=?
1
a1
£¾=?
1
a
£¾=
1
a
-2=a
£¬
ËùÒÔa2+2a-1=0
½âµÃa=
-2+
8
2
=
2
-1
£¬£¨a=-
2
-1∉(
1
3
£¬
1
2
]
£¬ÉáÈ¥£©  ¡­£¨5·Ö£©
¢Ûµ±
1
4
£¼a¡Ü
1
3
ʱ£¬¼´3¡Ü
1
a
£¼4
ʱ£¬a2=?
1
a1
£¾=?
1
a
£¾=
1
a
-3=a

½âµÃa=
-3+
13
2
£¨a=
-3-
13
2
∉(
1
4
£¬
1
3
]
£¬ÉáÈ¥£©      ¡­£¨6·Ö£©
×ÛÉÏ£¬¼¯ºÏA={
-1+
5
2
£¬
2
-1
£¬
-3+
13
2
}£®¡­£¨7·Ö£©
£¨¢ó£©Ö¤Ã÷£º½áÂÛ³ÉÁ¢£®¡­£¨8·Ö£©
ÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬
¿ÉÉèan=
pn
qn
£¨pnÊǷǸºÕûÊý£¬qnÊÇÕýÕûÊý£¬ÇÒpn£¬qn»¥ÖÊ£©
ÓÉa1=?
p
q
£¾=
p1
q1
£¬¿ÉµÃ0¡Üp1£¼q£»           ¡­£¨9·Ö£©
Èôpn¡Ù0£¬Éèqn=¦Ápn+¦Â£¨0¡Ü¦Â£¼pn£¬¦Á£¬¦ÂÊǷǸºÕûÊý£©
Ôò
qn
pn
=¦Á+
¦Â
pn
£¬¶øÓÉan=
pn
qn
µÃ
1
an
=
qn
pn

an+1=?
1
an
£¾=?
qn
pn
£¾=
¦Â
pn
£¬¹Êpn+1=¦Â£¬qn+1=pn£¬¿ÉµÃ0¡Üpn+1£¼pn ¡­£¨11·Ö£©
Èôpn=0Ôòpn+1=0£¬
Èôa1£¬a2£¬¡­£¬aq¾ù²»Îª0£¬ÔòÕýÕûÊýpn£¨n=1£¬2£¬3£¬¡­£¬q£©»¥²»ÏàͬÇÒ¶¼Ð¡ÓÚq£¬
µ«Ð¡ÓÚqµÄÕýÕûÊý¹²ÓÐq-1¸ö£¬Ã¬¶Ü£®
¹Êa1£¬a2£¬¡­£¬aqÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬¼´´æÔÚm£¨1£¼m¡Üq£©£¬Ê¹µÃam=0£®
´Ó¶øÊýÁÐ{an£©ÖÐamÒÔ¼°ËüÖ®ºóµÄÏî¾ùΪ0£¬
ËùÒÔ¶ÔÓÚ´óÓÚqµÄ×ÔÈ»Êýn£¬¶¼ÓÐan=0   ¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÝÍÆʽ£¬¿¼²é·´Ö¤·¨µÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©É輯ºÏMÊÇRµÄ×Ó¼¯£¬Èç¹ûµãx0¡ÊRÂú×㣺?a£¾0£¬?x¡ÊM£¬0£¼|x-x0|£¼a£¬³Æx0Ϊ¼¯ºÏMµÄ¾Ûµã£®ÔòÏÂÁм¯ºÏÖÐÒÔ1Ϊ¾ÛµãµÄÓУ¨¡¡¡¡£©
¢Ù{
n
n+1
|n¡ÊN}
£»    
¢Ú{
2
n
|n¡ÊN*}
£»    
¢ÛZ£»    
¢Ü{y|y=2x}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©ÒÑÖªº¯Êýf(x)=
1
2
x2-alnx-
1
2
(a¡ÊR£¬a¡Ù0)
£®
£¨¢ñ£©µ±a=2ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ó£©Èô¶ÔÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©¡Ý0³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©ÒÑ֪ȫ¼¯U=R£¬¼¯ºÏM={x|x¡Ü1}£¬N={x|x2£¾4}£¬ÔòM¡É£¨?RN£©=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£®ÈôÊä³öS=15£¬Ôò¿òͼÖТٴ¦¿ÉÒÔÌîÈ루¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©ÔÚËÄÀâ׶P-ABCDÖУ¬²àÃæPAD¡Íµ×ÃæABCD£¬ABCDΪֱ½ÇÌÝÐΣ¬BC¡ÎAD£¬¡ÏADC=90¡ã£¬BC=CD=
12
AD=1
£¬PA=PD£¬E£¬FΪAD£¬PCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPA¡ÎƽÃæBEF£»
£¨¢ò£©ÈôPCÓëABËù³É½ÇΪ45¡ã£¬ÇóPEµÄ³¤£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó¶þÃæ½ÇF-BE-AµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸