分析 作出不等式组对应的平面区域,利用z=mx+y取得最大值的最优解有无穷多个,得到目标函数的对应的直线和不等式对应的边界的直线的斜率相同,解方程即可得到结论.
解答 解:作出不等式组表示的平面区域如图中阴影部分所示,
由于目标函数取最大值时的最优解有无穷多个,
所以目标函数z=mx+y的几何意义是直线mx+y-z=0与直线x-2y+2=0平行,
即两直线的斜率相等即-m=$\frac{1}{2}$,
解得m=-$\frac{1}{2}$.
故答案为:-$\frac{1}{2}$
点评 本题主要考查线性规划的应用,利用z的几何意义,结合z=mx+y取得最大值的最优解有无穷多个,利用结合数形结合是解决本题的关键.
科目:高中数学 来源: 题型:填空题
x | 2 | 4 | 5 | 7 |
y | 1.5 | t | 4.2 | 5.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (3,+∞) | B. | ($\sqrt{5}$,+∞) | C. | ($\sqrt{5}$,3) | D. | (0,$\sqrt{5}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com