20£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×ó¡¢ÓÒ½¹µãΪF1¡¢F2£¬ÍÖÔ²CÉϵĵã$P£¨\frac{{2\sqrt{6}}}{3}£¬\frac{{\sqrt{3}}}{3}£©$Âú×ã$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©×Ô¶¨µãQ£¨0£¬-2£©×÷Ò»ÌõÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¨µãBÔÚµãAµÄÏ·½£©£¬¼Ç$¦Ë=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}$£¬Çó¦ËµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨¢ñ£©Éè³ö½¹µã×ø±ê£¬ÀûÓÃ$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$ÇóµÃc2£¬ÔÙ½áºÏµã$P£¨\frac{{2\sqrt{6}}}{3}£¬\frac{{\sqrt{3}}}{3}£©$ÔÚÍÖÔ²Éϼ°Òþº¬Ìõ¼þÇóµÃa2£¬b2µÄÖµµÃ´ð°¸£»
£¨¢ò£©ÓÉÌâ¿ÉÖª£¬0£¼¦Ë£¼1£®ÓÉ$¦Ë=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}$£¬µÃ$\overrightarrow{QB}=¦Ë\overrightarrow{QA}$£¬È»ºó·ÖÖ±ÏßlµÄбÂÊ´æÔںͲ»´æÔÚÇó½â£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇó½â£®

½â´ð ½â£º£¨¢ñ£©ÉèF1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐ$c=\sqrt{{a^2}-{b^2}}$£¬
ÓÚÊÇ$\overrightarrow{P{F_1}}=£¨\frac{{2\sqrt{6}}}{3}+c£¬\frac{{\sqrt{3}}}{3}£©$£¬$\overrightarrow{P{F_2}}=£¨\frac{{2\sqrt{6}}}{3}-c£¬\frac{{\sqrt{3}}}{3}£©$£¬
ÔòÓÉ$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬µÃ$£¨\frac{{2\sqrt{6}}}{3}+c£©£¨\frac{{2\sqrt{6}}}{3}-c£©+{£¨\frac{{\sqrt{3}}}{3}£©^2}=0$£¬
½âµÃc2=3£®
ÓÖµãPÔÚÍÖÔ²CÉÏ£¬¡à$\frac{{{{£¨\frac{{2\sqrt{6}}}{3}£©}^2}}}{a^2}+\frac{{{{£¨\frac{{\sqrt{3}}}{3}£©}^2}}}{b^2}=1$£¬¼´$\frac{8}{a^2}+\frac{1}{b^2}=3$£®
ÓÖa2-b2=c2=3£¬¡àb2=a2-3£®
ÁªÁ¢ÒÔÉÏÁ½Ê½²¢ÕûÀíµÃ3a4-18a2+24=0£¬½âµÃa2=2£¨Éᣩ£¬»òa2=4£®
¡àb2=1£®
ÓÚÊÇ£¬ËùÇóµÄÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£»
£¨¢ò£©ÓÉÌâ¿ÉÖª£¬0£¼¦Ë£¼1£®
ÓÚÊÇ£¬ÓÉ$¦Ë=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}$£¬Ôò$\overrightarrow{QB}=¦Ë\overrightarrow{QA}$£¬
£¨1£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬
ÇóµÃ£¬B£¨0£¬-1£©£¬A£¨0£¬1£©£¬
¡à$|\overrightarrow{QB}|=1£¬|\overrightarrow{QA}|=3$£¬
´Ëʱ$¦Ë=\frac{{|\overrightarrow{QB}|}}{{|\overrightarrow{QA}|}}=\frac{1}{3}$£®
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx-2£®¢Ù
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«¢Ù´úÈë$\frac{x^2}{4}+{y^2}=1$ÏûÈ¥yµÃ£º£¨1+4k2£©x2-16kx+12=0£®
ÓÉ¡÷=162k2-4¡Á12¡Á£¨1+4k2£©£¾0£¬½âµÃ${k^2}£¾\frac{3}{4}$£®
${x_1}+{x_2}=\frac{16k}{{1+4{k^2}}}$£¬${x_1}{x_2}=\frac{12}{{1+4{k^2}}}$£¬¢Ú
ÓÖ$\overrightarrow{QB}=¦Ë\overrightarrow{QA}$£¬¡à£¨x2£¬y2+2£©=¦Ë£¨x1£¬y1+2£©£¬
¡àÓÐx2=¦Ëx1£¬¢Û
½«¢Û´úÈë¢ÚµÃ$£¨1+¦Ë£©{x_1}=\frac{16k}{{1+4{k^2}}}$£¬$¦Ëx_1^2=\frac{12}{{1+4{k^2}}}$£¬¢Ü
ÏûÈ¥x1µÃ$\frac{¦Ë}{{{{£¨1+¦Ë£©}^2}}}•\frac{{{{16}^2}{k^2}}}{{{{£¨1+4{k^2}£©}^2}}}=\frac{12}{{1+4{k^2}}}$£¬
¡à$\frac{{{{£¨1+¦Ë£©}^2}}}{¦Ë}=\frac{{{{16}^2}{k^2}£¨1+4{k^2}£©}}{{12•{{£¨1+4{k^2}£©}^2}}}$£¬»¯¼òµÃ$¦Ë+\frac{1}{¦Ë}=\frac{64}{{3£¨\frac{1}{k^2}+4£©}}-2$£¬
¡ß$0£¼\frac{1}{k^2}£¼\frac{4}{3}$£¬$4£¼\frac{1}{k^2}+4£¼\frac{16}{3}$£¬¡à$2£¼\frac{64}{{3£¨\frac{1}{k^2}+4£©}}-2£¼\frac{10}{3}$£¬
¡à$2£¼¦Ë+\frac{1}{¦Ë}£¼\frac{10}{3}$ÇÒ0£¼¦Ë£¼1£®
Éè$f£¨¦Ë£©=¦Ë+\frac{1}{¦Ë}$£¬Ôòf£¨¦Ë£©ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£¬ÓÖ$f£¨\frac{1}{3}£©=\frac{10}{3}£¬f£¨1£©=2$£¬
¡à$\frac{1}{3}£¼¦Ë£¼1$£®
×ۺϣ¨1£©¡¢£¨2£©¿ÉµÃ£¬¦ËµÄÈ¡Öµ·¶Î§ÊÇ$\frac{1}{3}¡Ü¦Ë£¼1$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÖ±ÏߺÍԲ׶ÇúÏßλÖùØϵµÄÓ¦Óã¬ÑµÁ·ÁËƽÃæÏòÁ¿ÔÚ½âÌâÖеÄÓ¦Ó㬿¼²éÁËÉæ¼°Ö±ÏߺÍԲ׶ÇúÏßÎÊÌâÖеġ°Éè¶ø²»Ç󡱵ĽâÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó½¹µãΪF£¨-c£¬0£©£¬Ð±ÂÊΪ$\frac{a}{b}$ÇÒ¾­¹ýµãFµÄÖ±ÏßlÓëy2=4cx½»ÓÚµãP£¬ÇÒ|OP|=|OF|£¬OΪԭµã£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1+\sqrt{5}}{2}$B£®$\frac{1+\sqrt{3}}{2}$C£®$\frac{4\sqrt{2}-2}{7}$D£®$\frac{4\sqrt{2}+2}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®¼ÆË㣺cos$\frac{4¦Ð}{3}$-tan£¨-$\frac{¦Ð}{4}$£©+sin$\frac{3¦Ð}{2}$+£¨-2£©¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª$\overrightarrow{A{B}_{1}}$¡Í$\overrightarrow{A{B}_{2}}$£¬|AB1|=3£¬|AB2|=4£¬$\overrightarrow{AP}$=$\frac{¦Ë}{3}$$\overrightarrow{A{B}_{1}}$+$\frac{¦Ì}{4}$$\overrightarrow{A{B}_{2}}$£®
£¨1£©ÈôB1£¬P£¬B2Èýµã¹²Ïߣ¬Çó|$\overrightarrow{AP}$|µÄ×îСֵ£¬²¢ÓÃ$\overrightarrow{A{B}_{1}}$£¬$\overrightarrow{A{B}_{2}}$±íʾ$\overrightarrow{AP}$£»
£¨2£©ÉèQÊÇAB1B2µÄÄÚÐÄ£¬Èô|$\overrightarrow{QP}$|¡Ü2£¬Çó$\overrightarrow{{B}_{1}P}$•$\overrightarrow{{B}_{2}P}$µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²CµÄ½¹µã·Ö±ðΪF1£¨$-2\sqrt{2}$£¬0£©¡¢F2£¨$2\sqrt{2}$£¬0£©£¬³¤Ö᳤Ϊ6£¬ÉèÖ±Ïßy=x+2½»ÍÖÔ²CÓÚA¡¢BÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Çó¡÷OABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬µã£¨2£¬$\sqrt{2}$£©ÔÚCÉÏ£®
£¨1£©ÇóCµÄ±ê×¼·½³Ì£»
£¨2£©ÉèÖ±Ïßl¹ýµãP£¨0£¬1£©£¬µ±lÈƵãPÐýתµÄ¹ý³ÌÖУ¬ÓëÍÖÔ²CÓÐÁ½¸ö½»µãA£¬B£¬ÇóÏ߶ÎABµÄÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ö±ÏßlÓëÍÖÔ²$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©½»ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨ax1£¬by1£©£¬$\overrightarrow{n}$=£¨ax2£¬by2£©£¬Èô$\overrightarrow{m}¡Í\overrightarrow{n}$£¬ÇÒÍÖÔ²ÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£¬ÓÖÍÖÔ²¾­¹ýµã£¨$\frac{\sqrt{2}}{2}$£¬1£©£¬0Ϊ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÇóÖ¤£º¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®
£¨3£©ÈôÖ±ÏßlÔÚyÖáÉϽؾàΪ1£¬ÔÚyÖáÉÏÊÇ·ñ´æÔÚµãP£¨0£¬¦Ë£©Ê¹µÃÒÔPA£¬PBΪÁڱߵÄƽÐÐËıßÐÎÊÇÁâÐΣ¬Èç¹û´æÔÚ£¬Çó³ö¦ËµÄÈ¡Öµ·¶Î§£¬Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçÓÒͼËùʾ£¬PAΪԲOµÄÇÐÏߣ¬ÇеãΪA£¬ACÊÇÖ±¾¶£¬MΪPAµÄÖе㣬MCÓëÔ²½»ÓÚµãB£®
ÇóÖ¤£º£¨I£©PM2=MB•MC
£¨¢ò£©¡ÏMBP+¡ÏACP=$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÓÐÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÔÚƽÃæÄÚ£¬F1¡¢F2ÊǶ¨µã£¬|F1F2|=6£¬¶¯µãMÂú×ã|MF1|+|MF2|=6£¬ÔòµãMµÄ¹ì¼£ÊÇÍÖÔ²£»
¢Ú¡°ÔÚ¡÷ABCÖУ¬¡ÏB=60¡ã¡±ÊÇ¡°¡ÏA£¬¡ÏB£¬¡ÏCÈý¸ö½Ç³ÉµÈ²îÊýÁС±µÄ³äÒªÌõ¼þ£»
¢Û¡°x=0¡±ÊÇ¡°x¡Ý0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÜÒÑÖªÏòÁ¿$\overrightarrow a£¬\overrightarrow b£¬\overrightarrow c$ÊÇ¿Õ¼äµÄÒ»¸ö»ùµ×£¬ÔòÏòÁ¿$\overrightarrow a+\overrightarrow b£¬\overrightarrow a-\overrightarrow b£¬\overrightarrow c$Ò²ÊÇ¿Õ¼äµÄÒ»¸ö»ùµ×£»
¢ÝÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇ$\frac{a}{b}=-3$£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊǢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸