精英家教网 > 高中数学 > 题目详情
20.已知双曲线C经过点(1,1),它渐近线方程为$y=±\sqrt{3}x$,求双曲线C的标准方程.

分析 设出双曲线方程,利用点的坐标满足方程求解即可.

解答 解:由题意设所求的双曲线方程为:$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{1}=m$,m≠0,
双曲线C经过点(1,1),可得$\frac{1}{3}-1=m$,解得m=-$\frac{2}{3}$,
所求的双曲线方程为:$\frac{{3{x^2}}}{2}-\frac{y^2}{2}=1$.
双曲线C的标准方程:$\frac{{x}^{2}}{\frac{2}{3}}-\frac{{y}^{2}}{2}=1$.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=1的切线与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于两点A,B,分别以A,B为切点的$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的切线交于点P,则点P的轨迹方程为$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则交点确定的圆的方程为(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=\frac{1}{x}$的图象与函数y=3sinπx(-1≤x≤1)的图象所有交点的横坐标与纵坐标的和等于(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若对于任意正数x,y,都有f(xy)=f(x)+f(y),且f(8)=-3,则$f(a)=\frac{1}{2}$时,正数a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量组中,能作为平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.直角坐标系xoy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ=1.直线l与曲线C交于A,B两点.
(1)求|AB|的长;     
(2)若P点的极坐标为(1,$\frac{π}{2}$),求AB中点M到P的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积(  )
A.24πB.21 πC.33πD.39 π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正方形ABCD所在平面与四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.
(1)求证:EF⊥平面BCE;
(2)设线段CD、AE的中点分别为P、M,求PM与BC所成角的正弦值;
(3)求二面角F-BD-A的平面角的正切值.

查看答案和解析>>

同步练习册答案