【题目】如图,在四棱锥中,是正三角形,四边形是正方形.
(Ⅰ)求证:;
(Ⅱ)若,求直线与平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】网络游戏要实现可持续发展,必须要发展绿色网游.为此,国家文化部将从内容上对网游作出强制规定,国家信息产业部还将从技术上加强对网游的强制限制,开发限制网瘾的疲劳系统,现已开发的“游戏防沉迷系统”规则如下:
①小时以内(含小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:)与游戏时间(小时)满足关系式:(为常数);
②小时到小时(含小时)为疲劳时间,玩家在这段时间内获得的经验值为(即累积经验值不变);
③超过小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为.
(1)当时,写出累积经验值与游戏时间的函数关系式,并求出游戏小时的累积经验值;
(2)定义“玩家愉悦指数”为累积经验值与游戏时间的比值,记作;若,开发部门希望在健康时间内,这款游戏的“玩家愉悦指数”不低于,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1).
(1)求f(x)的解析式;
(2)若关于x的方程f(1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;
(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,准线为,在抛物线上任取一点,过做的垂线,垂足为.
(1)若,求的值;
(2)除外,的平分线与抛物线是否有其他的公共点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是边长为2的菱形,.,且平面,,点分别是线段上的中点,在上.且.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面的成角的正弦值;
(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.
(1)求椭圆的方程;
(2)过点作轴的垂线,交椭圆于,求证:存在实数,使得.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com