精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,是正三角形,四边形是正方形.

(Ⅰ)求证:

(Ⅱ)若,求直线与平面所成角的正弦值.

【答案】(I)见解析(II)

【解析】

(Ⅰ)取的中点的中点,连结.要证,即证

(Ⅱ)过B平面,垂足为,连接为直线与平面所成角.

(I)取的中点的中点,连结

由△是正三角形,四边形是正方形得

平面

所以平面

因为,所以平面

平面,所以

的中点是,所以

II)过B平面,垂足为,连接

为直线与平面所成角,

平面平面,得

平面

所以平面

平面平面,得平面

于是点到平面的距离等于点到平面的距离等于

,则

计算得

在等腰三角形中可算得

所以直线与平面所成角的正弦值等于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网络游戏要实现可持续发展,必须要发展绿色网游.为此,国家文化部将从内容上对网游作出强制规定,国家信息产业部还将从技术上加强对网游的强制限制,开发限制网瘾的疲劳系统,现已开发的“游戏防沉迷系统”规则如下:

小时以内(含小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:)与游戏时间(小时)满足关系式:为常数);

小时到小时(含小时)为疲劳时间,玩家在这段时间内获得的经验值为(即累积经验值不变);

③超过小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为.

1)当时,写出累积经验值与游戏时间的函数关系式,并求出游戏小时的累积经验值;

2)定义“玩家愉悦指数”为累积经验值与游戏时间的比值,记作;若,开发部门希望在健康时间内,这款游戏的“玩家愉悦指数”不低于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=ax+kaxa0a≠1)是R上的奇函数,且f1

1)求fx)的解析式;

2)若关于x的方程f1+f13mx2)=0在区间[01]内只有一个解,求m取值集合;

3)是否存在正整数n,使不得式f2xn1fx)对一切x[11]均成立?若存在,求出所有n的值若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为准线为在抛物线上任取一点的垂线垂足为.

(1)若的值

(2)除的平分线与抛物线是否有其他的公共点并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性

(2)若函数在区间上存在两个不同零点求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中,底面是边长为2的菱形,.,且平面,点分别是线段上的中点,上.且.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面的成角的正弦值;

(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)设.

①求

②求

③求

(2)求除以9的余数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

I,求函数的单调区间.

II若函数在区间上是减函数,求实数的取值范围.

III过坐标原点作曲线的切线,求切线的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,若椭圆上一点满足,过点的直线与椭圆交于两点.

(1)求椭圆的方程;

(2)过点轴的垂线,交椭圆,求证:存在实数,使得.

查看答案和解析>>

同步练习册答案