精英家教网 > 高中数学 > 题目详情
3.已知命题p:?x∈R,x2-x+1>0,则¬p为(  )
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

分析 本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式:将量词“?”与“?”互换,结论同时否定,写出命题的否定即可

解答 解:∵命题p:?x∈R,x2-x+1>0,
∴命题p的否定是“?x0∈R,${x_0}^2-{x_0}+1≤0$”
故选:D

点评 本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点M是圆(x+1)2+y2=36上任意点,点N为(1,0),点E为MN的中点.
(1)当点M在圆上运动时,求点E的轨迹C;
(2)过点F(-2,0)的直线l与曲线C交于点A,B,且|AB|=2$\sqrt{6}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知sin(π-α)-cos(π+α)=$\frac{{\sqrt{2}}}{3},({\frac{π}{2}<α<π})$.求下列各式的值:
(1)sinα-cosα;
(2)${sin^2}({\frac{π}{2}-α})-{cos^2}({\frac{π}{2}+α})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b∈R,函数f(x)=|x-a|+|a-$\frac{1-b}{2}}$|是偶函数,则2015-3ab2的取值范围是{2015}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列推断中,错误的是(  )
A.A∈l,A∈α,B∈α⇒l?α
B.l?α,A∈l⇒A∉α
C.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
D.A,B,C∈α,A,B,C∈β且A,B,C不共线⇒α,β重合

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$f(x)={x^{\frac{2}{3}}}-{x^{-\frac{1}{2}}}$,则满足f(x)>0的x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中:
①在△ABC中,若cosA<cosB,则A>B;
②若函数f(x)的导数为f'(x),f(x0)为f(x)的极值的充要条件是f'(x0)=0;
③函数y=|tan(2x+$\frac{π}{3}$)|的最小正周期为$\frac{π}{2}$;
④同一直角坐标系中,函数f(x)=sinx的图象与函数f(x)=x的图象仅有三个公共点.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≥a\\ 1-x,x<a\end{array}\right.$(其中a>0),若$f(1)+f(-a)=\frac{5}{2}$,则实数a的值为$\frac{1}{2}$或$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案