精英家教网 > 高中数学 > 题目详情
在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.
(1)求三棱锥A1-D1EF的体积;
(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)

【答案】分析:(1)由已知中棱长为2的正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,F是侧面AA1D1D的中心,我们利用等体积法,可得三棱锥A1-D1EF的体积等于三棱锥E-D1A1F的体积,分别求出其底面面积和高,代入棱锥的体积公式,即可得到答案.
(2)取A1D1的中点G,易得FG⊥平面A1B1C1D1,根据线面夹角的定义可得∠GEF即为EF与底面A1B1C1D1所成的角的平面角,解Rt△GEF即可得到EF与底面A1B1C1D1所成的角的大小.
解答:解:(1).(6分)(体积公式正确3分)
(2)取A1D1的中点G,则FG⊥平面A1B1C1D1,EF在底面A1B1C1D1的射影为GE,所求的角的大小等于∠GEF的大小,(8分)
在Rt△GEF中,所以EF与底面A1B1C1D1所成的角的大小是.(12分)
点评:本题考查的知识点是棱锥的体积,直线与平面所成的角,其中(1)的关键是利用等体积法,将求三棱锥A1-D1EF的体积转化为求三棱锥E-D1A1F的体积,降低运算的难度,(2)的关键是确定出∠GEF即为EF与底面A1B1C1D1所成的角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)如图,在棱长为2的正方体ABCD-A'B'C'D'中,E,F分别是A'B'和AB的中点,求异面直线A'F与CE所成角的大小 (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:黑龙江省鹤岗一中2010-2011学年高一下学期期末考试数学理科试题 题型:013

在棱长为2的正方体A中,点E,F分别是棱AB,BC的中点,则点到平面EF的距离是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案