分析 (1)直线AC⊥BC,kAC•kBC的=-1
(2)设A(x1,y1),P(x0,y0),则B(-x1,-y1),kAC•kBC=$\frac{y_0^2-y_1^2}{x_0^2-x_1^2}$,
又由$\frac{{{x_0}^2}}{9}+\frac{{{y_0}^2}}{4}=1$,$\frac{{{x_1}^2}}{9}+\frac{{{y_1}^2}}{4}=1$,两式相减得$\frac{{{x_0}^2-{x_1}^1}}{9}+\frac{{{y_0}^2-{y_1}^2}}{4}=0$,即可.
解答 解:(1)圆x2+y2=r2(r>0)中,AB为圆的任意一条直径,C为圆上异于A、B的任意一点,当直线AC与BC,
有直线AC⊥BC,kAC•kBC=-1…..(4分);
(2)设A(x1,y1),P(x0,y0),则B(-x1,-y1),kAC•kBC=$\frac{y_0^2-y_1^2}{x_0^2-x_1^2}$,
又由$\frac{{{x_0}^2}}{9}+\frac{{{y_0}^2}}{4}=1$,$\frac{{{x_1}^2}}{9}+\frac{{{y_1}^2}}{4}=1$,
两式相减得$\frac{{{x_0}^2-{x_1}^1}}{9}+\frac{{{y_0}^2-{y_1}^2}}{4}=0$,
所以kAC•kBC=$-\frac{4}{9}$…(9分)
(3)kAC•kBC=-$\frac{b^2}{a^2}$.…(12分).
点评 本题考查了直线与圆、椭圆的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com