精英家教网 > 高中数学 > 题目详情

已知函数.
(1)画出该函数的图像;
(2)设,求上的最大值.

(1)函数的图像详见解析;(2)当时,;当时,.

解析试题分析:(1)先化简函数得,进而根据二次函数的图像分段作出该函数的图像即可;(2)结合(1)中函数的图像,分别得到时的最大值为时的最大值为,先由求出,进而分两种情况,求取函数的最大值即可.
(1)因为
结合二次函数的图像可作出该函数的图像如下图:

(2)当时,因为的最大值为时,单调递增,最大值为
,则
所以当时, ,此时上,
时,,此时上,        8分.
考点:1.分段函数;2.函数的图像;3.函数的最值;4.分类讨论的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题:
①设是平面上的线性变换,则
②对,则是平面上的线性变换;
③若是平面上的单位向量,对,则是平面上的线性变换;
④设是平面上的线性变换,,若共线,则也共线。
其中真命题是                    (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)若在其定义域内是增函数,求b的取值范围;
(2)若,若函数在 [1,3]上恰有两个不同零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知上的奇函数,且当时,.
(1)求的表达式;
(2)画出的图象,并指出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数,
(1)求的值;
( 2) 判断并证明函数的单调性;
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;
(2)已知具有“性质”,且当,求上有最大值;
(3)设函数具有“性质”,且当时,.若交点个数为2013,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案