精英家教网 > 高中数学 > 题目详情

【题目】已知直线经过椭圆: 的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(1)求椭圆方程;

(2)求线段的长度的最小值;

(3)当线段的长度最小时,在椭圆上有两点,使得,的面积都为,求直线y轴上的截距。

【答案】(1) ;(2) ;(3)

【解析】

1)因为直线过椭圆的左顶点与上顶点,故可解出直线与坐标轴的交点,即知椭圆的长半轴长与短半轴长,依定义写出椭圆的方程即可.
2)引入直线AS的斜率k,用点斜式写出直线AS的方程,与l的方程联立求出点M的坐标,以及点S的坐标,又点B的坐标已知,故可解 出直线SB的方程,亦用参数k表示的方程,使其与直线l联立,求出点N的坐标,故线段MN的长度可以表示成直线AS的斜率k的函数,根据其形式选择单调性法或者基本不等式法求最值,本题适合用基本不等式求最值.
3)在上一问的基础上求出的参数k,则直线SB的方程已知,可求出线段SB的长度,若使面积为,只须点T到直线BS的距离为 即可,由此问题转化为研究与直线SB平行且距离为的直线与椭圆的交点个数问题,求出平行直线l',即有得到y轴上的截距.

解(1)由已知得椭圆的左顶点 (-2,0),上顶点(0,1),

,故椭圆方程:

(2)直线AS的斜率k显然存在,且大于0,故设直线AS

,则,可得

从而,即

B20),直线BS

可得

,当且仅当时,线段长度最小值为

(3),直线BS的方程为

椭圆上有两点使三角形面积为,则点BS的距离等于

设直线,由,得

①当,联立,检验,符合题意。

,联立,检验,舍去。

综上所述,直线y轴上的截距是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题:在中,的充要条件,命题:若为等差数列的前项和,则成等差数列.下列命题为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若的图象与轴有个不同的交点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)设直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间(0,+∞)上的函数f(x)满足f(x1)-f(x2),且当x>1时,f(x)<0.

(1)证明:f(x)为单调递减函数.

(2)f(3)=-1,求f(x)[2,9]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若存在区间,同时满足下列条件:①上是单调的;②当定义域是时,的值域也是,则称为该函数的“和谐区间”.下列函数存在“和谐区间”的是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且对任意的. .

(1)求并证明的奇偶性;

(2)判断的单调性并证明;

(3);若对任意恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCDPD∥QAQA=AB=PD.

I)证明:平面PQC⊥平面DCQ

II)求二面角Q-BP-C的余弦值.

查看答案和解析>>

同步练习册答案