精英家教网 > 高中数学 > 题目详情

【题目】某公司有AB两个景点,位于一条小路(直道)的同侧,分别距小路 km2 km,且AB景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.

【答案】B景点在小路的投影处

【解析】所选观景点应使对两景点的视角最大.由平面几何知识,该点应是过AB两点的圆与小路所在的直线相切时的切点,以小路所在直线为x轴,过B点与x轴垂直的直线为y轴上建立直角坐标系.由题意,得A( )、B(0,2),设圆的方程为(xa)2+(yb)2b2.由AB在圆上,得,或,由实际意义知.∴圆的方程为x2+(y)2=2,切点为(0,0),∴观景点应设在B景点在小路的投影处.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且 ,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是(
A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F,点M(2,m)为其上一点,且|MF|=4.
(1)求p与m的值;
(2)如图,过点F作直线l交抛物线于A、B两点,求直线OA、OB的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(m2m-1)x-5m-3m为何值时,f(x):

(1)是幂函数;

(2)是正比例函数;

(3)是反比例函数;

(4)是二次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应市场需要某地准备建一个圆形生猪储备基地(如右图)它的附近有一条公路从基地中心O处向东走1 km是储备基地的边界上的点A接着向东再走7 km到达公路上的点B从基地中心O向正北走8 km到达公路的另一点C.现准备在储备基地的边界上选一点D修建一条由D通往公路BC的专用线DEDE的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点. (Ⅰ)证明:平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:B1F∥平面A1BE;
(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos22x﹣2,给出下列命题: ①β∈R,f(x+β)为奇函数;
α∈(0, ),f(x)=f(x+2α)对x∈R恒成立;
x1 , x2∈R,若|f(x1)﹣f(x2)|=2,则|x1﹣x2|的最小值为
x1 , x2∈R,若f(x1)=f(x2)=0,则x1﹣x2=kπ(k∈Z).其中的真命题有(
A.①②
B.③④
C.②③
D.①④

查看答案和解析>>

同步练习册答案