精英家教网 > 高中数学 > 题目详情
4.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(5)和f(2003)的值分别为(  )
A.0和2001B.1和$\frac{2001}{2}$C.$\frac{5}{2}$和$\frac{2003}{2}$D.5和2003

分析 先计算f(2),再计算f(5)和f(2003)的值.

解答 解:∵函数f(x)(x∈R)为奇函数,
∴f(-1)=f(1),
∵f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),
∴f(1)=f(-1)+f(2),
∴f(2)=1,
∴f(x+2)-f(x)=1,
∴f(3)=f(1)+1,f(5)=f(3)+1=2+$\frac{1}{2}$=$\frac{5}{2}$,
∴f(2003)=1001+$\frac{1}{2}$=$\frac{2003}{2}$.
故选:C.

点评 本题考查函数的奇偶性,考查学生的计算能力,正确求出f(2)是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知直线1:y=kx+$\frac{1}{2}$与离心率为e的双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,0<b<$\frac{1}{2}$)相交于A(x1,y1),B(x2,y2)两点,若对任意的k∈R,x1x2+y1y2恒为定值,则有(  )
A.e2=$\frac{2}{1-4{b}^{2}}$B.e2=$\frac{1}{1-4{b}^{2}}$C.e2=$\frac{1+4{b}^{2}}{1-4{b}^{2}}$D.e2=1-4b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:函数f(x)=(a2-1)x2-2(a-1)x+3的图象全在x轴上方,命题q:关于x方程x2-ax+a+3=0的两根均为负根,若p∧q是假命题,p∨q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x>0,y>0,且(x-$\frac{1}{y}$)2=$\frac{16y}{x}$,则当x+$\frac{1}{y}$取最小值时,x2+$\frac{1}{{y}^{2}}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=$\sqrt{sinx}$+$\sqrt{-cosx}$,且0≤x≤2π,则y的范围是[1,$\sqrt{2+\sqrt{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.己知集合A={x|8+2x-x2≥0},B={x||x|<m},A∩B=B,则m的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列函数中,对于定义域内的任意两个不同的x1,x2,都满足$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)的有②③.
①y=${x}^{\frac{1}{2}}$;②y=2x;③y=x2;④y=lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若-1<a<2,-2<b<1,则a-3b的取值范围是(-4,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=log0.5(1+2x+4x•a),当x∈(-∞,1]时,f(x)有意义,则实数α的值的集合为{a|a≥-2},当f(x)的定义域为(-∞,1]时,则实数α的值的集合为{a|a≥-2}.

查看答案和解析>>

同步练习册答案