精英家教网 > 高中数学 > 题目详情
19.若点A(m,n)在第一象限,且在直线$\frac{x}{3}$+$\frac{y}{4}$=1上,则mn的最大值是3.

分析 代入A的坐标,可得4m+3n=12,(m,n>0),由基本不等式可得mn的最大值.

解答 解:点A在直线$\frac{x}{3}$+$\frac{y}{4}$=1上,
得:$\frac{m}{3}$+$\frac{n}{4}$=1,即为4m+3n=12,
因为点A在第一象限,所以m>0,n>0,
由4m+3n≥2$\sqrt{4m•3n}$=2$\sqrt{12mn}$,
即12≥2$\sqrt{12mn}$,即mn≤3
当且仅当4m=3n=6时,取等号.
故mn的最大值为3.
故答案为:3.

点评 本题考查基本不等式在最值问题中的应用,注意一正二定三等条件的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-1-lnx(a∈R)
(1)当a=3时,求函数f(x)的单调区间;
(2)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥3mx-2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow m=(2sin(ωx+\frac{π}{3}),1)\;,\overrightarrow{\;n}=(2cosωx,-\sqrt{3})\;(ω>0)$,函数f(x)=$\overrightarrow m•\overrightarrow n$的两条相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调递增区间;
(2)当$α∈[\frac{π}{12},\frac{7π}{12}]$时,若f(α)=$\frac{6}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了计算运河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100m,AB=140m,∠BDA=60°,∠BCD=135°,则两景点B与C之间的距离为113.12(m).(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:$\sqrt{2}$=1.414,$\sqrt{3}$=1.732,$\sqrt{5}$=2.236).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c是正数,求证:a2ab2bc2c≥ab+ccc+bbc+a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-mxk(m,k∈R)定义域为(0,+∞)
(Ⅰ)若k=1时,f(x)在(1,+∞)上有最小值,求m的取值范围;
(Ⅱ)若k=2时,f(x)的值域为[0,+∞),试求m的值;
(Ⅲ)试证:对任意实数m,k,总存在x0,使得当x∈(x0,+∞)时,恒有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)设G是△ABC的重心,证明:△GBC,△GAC,△GAB的面积相等.
(2)利用(1)的结论,证明:三角形顶点到重心的距离,等于重心到对边中点的距离的2倍.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y=ax2和直线1:x+y-1=0,若抛物线上总存在关于l对称的两点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案