精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)= sin2x+sinxcosx﹣
(1)求f(x)的单调增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若A为锐角且f(A)= ,b+c=4,求a的取值范围.

【答案】
(1)解:由题意可知,

=

,k∈Z,

可得

即f(x)的递增区间为 ,k∈Z


(2)解:由 得, ,A为锐角,

,∴ ,解得

由b+c=4和余弦定理得,

a2=b2+c2﹣2cbcosA=(b+c)2﹣3bc=16﹣3bc,

=4,当且仅当b=c时取等号,

∴a2=16﹣3bc≥16﹣3×4=4,解得a≥2

又a<b+c=4,

∴a的取值范围为2≤a<4


【解析】(1)根据二倍角公式以及变形、两角差的正弦公式化简解析式,由整体思想和正弦函数的递增区间求出f(x)的单调增区间;(2)由(Ⅰ)化简 ,由A的范围和特殊角的三角函数值求出A,由条件和余弦定理列出方程,化简后由基本不等式、三边关系求出a的范围.
【考点精析】本题主要考查了正弦函数的单调性和余弦定理的定义的相关知识点,需要掌握正弦函数的单调性:在上是增函数;在上是减函数;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在区间(0,+∞)内的单调函数,且对x∈(0,∞),都有f[f(x)﹣lnx]=e+1,设f′(x)为f(x)的导函数,则函数g(x)=f(x)﹣f′(x)的零点个数为(
A.0
B.l
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,e为自然对数的底数.
(1)求曲线y=f(x)在x=e2处的切线方程;
(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;
(3)关于x的方程f(x)=a有两个实根x1 , x2 , 求证:|x1﹣x2|<2a+1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2为双曲线C: (a>0,b>0)的左、右焦点,点P为双曲线C右支上一点,直线PF1与圆x2+y2=a2相切,且|PF2|=|F1F2|,则双曲线C的离心率为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ(a≠0).
(Ⅰ)求圆C的直角坐标系方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为 ρcos(θ+ )﹣1=0,曲线C的参数方程是 (t为参数).
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=cosα
(Ⅰ)当α为第二象限角时,化简f(α);
(Ⅱ)当α∈( ,π)时,求f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数y=sin(2x+ )的图象,只需将y=cos(2x﹣ )图象上的所有点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是定义在R上的奇函数,且在区间 上单调递增,若 ,则 的取值范围是( )
A.
B.
C.
D.(0,

查看答案和解析>>

同步练习册答案