精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率,且椭圆与圆的4个交点恰为一个正方形的4个顶点.

(1)求椭圆的标准方程;

(2)已知点为椭圆的下顶点, 为椭圆上与不重合的两点,若直线与直线的斜率之和为,试判断是否存在定点,使得直线恒过点,若存在,求出点的坐标;若不存在,请说明理由.

【答案】(1) (2) 存在定点,使得直线恒过点

【解析】试题分析:(1)第(1)问,直接根据已知条件得到关于a,b的一个方程组,再解方程组即可. (2)第(2)问,对直线的斜率分两种情况讨论.每一种情况都要先根据已知条件求直线DE的方程,再判断其方程是否过定点.

试题解析:

(1)因为椭圆的离心率

所以,即

因为椭圆与圆的4个交点恰为一个正方形的4个顶点,

所以直线与圆的一个交点在椭圆上,所以

解得,所以椭圆的标准方程为.

(2)由(1)知

当直线的斜率存在时,设直线的方程为

代入得,

所以,即.

,则

因为直线与直线的斜率之和为,所以

整理得,所以直线的方程为

显然直线经过定点.

当直线的斜率不存在时,设直线的方程为

因为直线与直线的斜率之和为,设,则

所以,解得

此时直线的方程为,显然直线经过定点.

综上,存在定点,使得直线恒过点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设动点P在棱长为1的正方体ABCDA1B1C1D1的对角线BD1上,记λ.∠APC为钝角时,λ的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥的底面ABCD是边长为2的菱形,侧面PAD是正三角形,,E为AD的中点,二面角

证明:平面PBE;

求点P到平面ABCD的距离;

求直线BC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出的四条曲线方程:

;②;③;④.

其中直线的“绝对曲线”的条数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近13年的宣传费和年销售量 数据作了初步处理得到下面的散点图及一些统计量的值

由散点图知建立关于的回归方程是合理的经计算得如下数据

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根据以上信息,建立关于的回归方程

(2)已知这种产品的年利润的关系为根据(1)的结果,求当年宣传费年利润的预报值是多少

对于一组数据其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,试判断函数的单调性;

(2)若,求证:函数上的最小值小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面 中点, .

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.

(1)求圆O的方程.

(2)直线与圆O交于AB两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案