精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周长为5,求b的长.

【答案】
(1)解:因为 所以

即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA

所以sin(A+B)=2sin(B+C),即sinC=2sinA

所以 =2


(2)解:由(1)可知c=2a…①

a+b+c=5…②

b2=a2+c2﹣2accosB…③

cosB= …④

解①②③④可得a=1,b=c=2;

所以b=2


【解析】(1)利用正弦定理化简等式的右边,然后整理,利用两角和的正弦函数求出 的值.(2)利用(1)可知c=2a,结合余弦定理,三角形的周长,即可求出b的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于平面向量 ,有下列三个命题:
①若 = ,则 =
②若 =(1,k), =(﹣2,6), ,则k=﹣3.
③非零向量 满足| |=| |=| |,则 + 的夹角为60°.
其中真命题的序号为 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是棱形, 平面 ,点分别为中点,连接 .

(1)求证:直线平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+y)=f(x)f(y),且f(1)=
(1)当n∈N*时,求f(n)的表达式;
(2)设an=nf(n),n∈N* , 求证a1+a2+a3+…+an<2;
(3)设bn=(9﹣n) ,n∈N* , Sn为bn的前n项和,当Sn最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ),从上的点轴的垂线,交于点,再从点轴的垂线,交于点.设 .

(Ⅰ)求数列的通项公式;

(Ⅱ)记,数列的前项和为,求证:

(Ⅲ)若已知),记数列的前项和为,数列的前项和为,试比较的大小.

查看答案和解析>>

同步练习册答案