某高校在202年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85), 第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;
(ⅱ)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求的分布列和数学期望.
(1)第3,4,5组的频率分别为;(2)学生甲和学生乙同时进入第二轮面试的概率;的分布列:
数学期望.0 1 2 P
解析试题分析:(1)根据频率分步直方图的性质,根据所给的频率分步直方图中小矩形的长和宽,求出矩形的面积,即这组数据的频率;(2)(ⅰ)本题是一个等可能事件的概率,试验发生包含的事件数是,满足条件的事件数是,根据等可能事件的概率公式,得到结果;(ⅱ)由题意知变量的可能取值是0,1,2,该变量符合超几何分布,根据超几何分布的概率公式写出变量的概率,写出这组数据的分布列和期望值.
试题解析:(1) 第三组的频率为0.065=0.3;
第四组的频率为0.045=0.2;
第五组的频率为0.025=0.1. 3分
(2)(ⅰ)设M:学生甲和学生乙同时进入第二轮面试
P(M)== 6分
(ⅱ)s%5¥u
10分0 1 2 P
12分
考点:随机抽样和样本估计总体的实际应用;离散型随机变量的期望与方差.
科目:高中数学 来源: 题型:解答题
某篮球运动员在最近几场大赛中罚球投篮的结果如下:
投篮次数n | 8 | 10 | 12 | 9 | 10 | 16 |
进球次数m | 6 | 8 | 9 | 7 | 7 | 12 |
进球频率m/n | | | | | | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立.
(1)设该选手参赛的轮次为ξ,求ξ的分布列.
(2)对于(1)中的ξ,设“函数f(x)=3sinπ(x∈R)是偶函数”为事件D,求事件D发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
年月“神舟 ”发射成功.这次发射过程共有四个值得关注的环节,即发射、实验、授课、返回.据统计,由于时间关系,某班每位同学收看这四个环节的直播的概率分别为、、、,并且各个环节的直播收看互不影响.
(1)现有该班甲、乙、丙三名同学,求这名同学至少有名同学收看发射直播的概率;
(2)若用表示该班某一位同学收看的环节数,求的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是,甲、丙两人同时不能被聘用的概率是,乙、丙两人同时能被聘用的概率为,且三人各自能否被聘用相互独立.
(1)求乙、丙两人各自被聘用的概率;
(2)设为甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求的分布列与均值(数学期望).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的只数多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.
(1)求一个试验组为甲类组的概率;
(2)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)
(1)求在一次游戏中
①摸出3个白球的概率;②获奖的概率.
(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com