精英家教网 > 高中数学 > 题目详情
过点(-2,-1)且在两坐标轴上的截距互为相反数的直线方程为
 
考点:直线的截距式方程
专题:直线与圆
分析:分当所求的直线经过原点、所求的直线不经过原点两种情况,分别依据条件求得所求的直线方程.
解答: 解:当所求的直线经过原点时,斜率为
1
2
,方程为y=
1
2
x,即x-2y=0.
当所求的直线不经过原点时,设所求直线的方程为
x
a
+
y
-a
=1,把点(-2,-1)代入可得
-2
a
+
-1
-a
=1,
求得a=-1,故要求的直线的方程为x-y+1=0.
故答案为:x-2y=0或x-y+1=0.
点评:本题主要考查求直线的方程,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C1的参数方程是
x=2cosθ
y=2+2sinθ
(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=-4cosθ.
(1)求曲线C1与C2交点的极坐标;
(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sinxcos(x+
π
6
)+1
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC,角A,B,C的对边分别为a,b,c,若f(A)=2,a=3,S△ABC=
3
,求b2+c2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是正数组成的数列,a1=1,且点(
an
,an+1)(n∈N*)在函数y=x2+1的图象上.数列{bn}满足b1=1,bn+1=bn+2an
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+(2b+1)x-a-2(a,b∈R).
(1)若a=0,当x∈[
1
2
,1]时恒有f(x)≥0,求b的取值范围;
(2)若a≠0且b=-1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;
(3)当a2+b2=1时,函数y=f(x)存在零点x0,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

书架上有语文书,数学书各三本,从中任取两本,取出的恰好都是数学书的概率为(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足z2=5-12i,则f(z)=z-
1
z
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的200名志愿者中随机抽取60名志愿者,其中年龄分组区间是:[20,25),[25,30),[30,35),[35,40),[40,45].
(1)求图中x的值并根据频率分布直方图估计这200名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的60名志愿者中按年龄在区间[20,35)和[35,45]采用分层抽样的方法抽取5名参加中心广场的宣传活动,再从这5名中采用简单随机抽样方法选取2名志愿者担任主要负责人,求所选两人中至少有一个年龄不低于35岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人分别进行3次和n次射击,甲乙每次击中目标的概率分别为
1
2
和p,记甲乙击中目标的次数分别为X和Y,且E(Y)=2,D(Y)=
2
3

(1)求X的概率分布及数学期望E(X)
(2)求乙至多击中目标2次的概率.

查看答案和解析>>

同步练习册答案