精英家教网 > 高中数学 > 题目详情
15.解不等式
(1)-2x2+x+15<0;
(2)x2-(2a+3)x+a2+3a>0.

分析 把不等式化为一元二次不等式的一般形式,求出不等式对应方程的实数根,即可写出不等式的解集.

解答 解:(1)不等式-2x2+x+15<0可化为2x2-x-15>0,
即(2x+5)(x-3)>0;
该不等式对应方程的实数解是-$\frac{5}{2}$和3,
所以该不等式的解集为(-∞,-$\frac{5}{2}$)∪(3,+∞);
(2)∵不等式x2-(2a+3)x+a2+3a>0,
可化为(x-a)[x-(a+3)]>0,
∴该不等式对应方程的两个实数根是a和a+3,且a<a+3,
∴该不等式的解集为(-∞,a)∪(a+3,+∞).

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若将二次函数f(x)=x2+x的图象向右平移a(a>0)个单位长度,得到二次函数g(x)=x2-3x+2的图象,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的函数,f(1)=1且对任意x∈R都有:f(x+5)≥f(x)+5与f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,则g(2015)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设{an}是等比数列,公比q=2,Sn为{an}的前n项和.记${T_n}=\frac{{17{S_n}-{S_{2n}}}}{{{a_{n+1}}}}$,n∈N*,设Tn为数列{Tn}最大项,则n=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=x上一定点B(1,1)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的纵坐标的取值范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:“任意的x∈R,存在m∈R,4x-2x+1-m=0且命题¬p是真命题,则实数m的取值范围是(  )
A.m>1B.m≥1C.m<-1D.m≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域:
(1)y=3-2x-x2,x∈[$-\frac{5}{2}$,$\frac{3}{2}$];
(2)y=|x+1|+|2x-2|;
(3)y=x+$\sqrt{1-x}$;
(4)y=$\frac{2x-2}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在(0,+∞)上的函数f(x),满足f(mn)=f(m)+f(n)(m,n>0),且当x>1时,f(x)>0.
(1)求f(1)的值;
(2)求证:f($\frac{m}{n}$)=f(m)-f(n)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x),当x>4时,f(x)=x-2014,且f(4-x)=f(4+x)恒成立,则当x<4时,f(x)=-x-2006.

查看答案和解析>>

同步练习册答案