精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=axex , 其中常数a≠0,e为自然对数的底数. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,求函数f(x)的极值;
(Ⅲ)若直线y=e(x﹣ )是曲线y=f(x)的切线,求实数a的值.

【答案】解:(Ⅰ)函数的导数f′(x)=a(ex+xex)=a(1+x)ex , 若a>0,由f′(x)>0得x>﹣1,即函数的单调递增区间为(﹣1,+∞),
由f′(x)<0,得x<﹣1,即函数的单调递减区间为(﹣∞,﹣1),
若a<0,由f′(x)>0得x<﹣1,即函数的单调递增区间为(﹣∞,﹣1),
由f′(x)<0,得x>﹣1,即函数的单调递减区间为(﹣1,+∞);
(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(﹣1,+∞),函数的单调递减区间为(﹣∞,﹣1),
即当x=﹣1时,函数f(x)取得极大值为f(﹣1)=﹣ ,无极小值;
(Ⅲ)设切点为(m,amem),
则对应的切线斜率k=f′(m)=a(1+m)em
则切线方程为y﹣amem=a(1+m)em(x﹣m),
即y=a(1+m)em(x﹣m)+amem=a(1+m)emx﹣ma(1+m)em+amem=a(1+m)emx﹣m2aem
∵y=e(x﹣ )=y=ex﹣ e,


即若直线y=e(x﹣ )是曲线y=f(x)的切线,则实数a的值是
【解析】(Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;(Ⅲ)设出切点坐标为(m,amem),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a的值.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101﹣150为轻度污染;151﹣200为中度污染;201~300为重度污染;>300为严重污染. 一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣m|﹣|x+3m|(m>0). (Ⅰ)当m=1时,求不等式f(x)≥1的解集;
(Ⅱ)对于任意实数x,t,不等式f(x)<|2+t|+|t﹣1|恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣a|+|2x﹣a|,a<0. (Ⅰ)求函数f(x)的最小值;
(Ⅱ)若不等式f(x)< 的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程为,点

Ⅰ)经过点且倾斜角为的直线与椭圆交于两点,求

Ⅱ)问是否存在直线与椭圆交于两点,若存在,求出直线斜率的取值范围;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),离心率e= ,已知点P(0, )到椭圆C的右焦点F的距离是 .设经过点P且斜率存在的直线与椭圆C相交于A、B两点,线段AB的中垂线与x轴相交于一点Q. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)求点Q的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,等差数列满足

1)分别求数列的通项公式;

2)若对任意的,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x-4| (x∈R)

(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;

(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;

(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.

查看答案和解析>>

同步练习册答案