精英家教网 > 高中数学 > 题目详情

【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________

【答案】

【解析】

设正方形边长为,可得出每个直角三角形的面积为,由几何概型可得出四个直角三角形的面积之和为,可求出,由得出并得出的值,再利用降幂公式可求出的值.

设正方形边长为,则直角三角形的两条直角边分别为,则每个直角三角形的面积为,由题意知,阴影部分正方形的面积为

所以,四个直角三角形的面积和为,即

由于是较小的锐角,则,所以,

因此,,故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地新建一家服装厂,从今年7月份开始投产,并且前4个月的产量分别为万件、万件、万件、万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了推销员在推销产品时接收订单不产生过多或过少的情况,需要估测以后几个月的产量,假如你是厂长,就月份x、产量y给出四种函数模型:.你将利用零一种模型去估算以后几个月的产量?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数对任意都有时,则方程的解为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解日益拥堵的交通状况,不少城市实施车牌竞价策略,以控制车辆数量.某地车牌竞价的基本规则是:①“盲拍”,即所有参与竞拍的人都要网络报价一次,每个人不知晓其他人的报价,也不知道参与当期竞拍的总人数;②竞价时间截止后,系统根据当期车牌配额,按照竞拍人的出价从高到低分配名额.某人拟参加月份的车牌竞拍,他为了预测最低成交价,根据竞拍网站的数据,统计了最近个月参与竞拍的人数(见下表):

月份

月份编号

竞拍人数(万人)

(1)由收集数据的散点图发现,可用线性回归模型拟合竞拍人数(万人)与月份编号之间的相关关系.请用最小二乘法求关于的线性回归方程:,并预测月份参与竞拍的人数.

(2)某市场调研机构从拟参加月份车牌竞拍人员中,随机抽取了人,对他们的拟报价价格进行了调查,得到如下频数分布表和频率分布直方图:

报价区间(万元)

频数

(i)求的值及这位竞拍人员中报价大于万元的概率;

(ii)若月份车牌配额数量为,假设竞拍报价在各区间分布是均匀的,请你根据以上抽样的数据信息,预测(需说明理由)竞拍的最低成交价.

参考公式及数据:①回归方程,其中

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=lnax2+x+6).

1)若a=﹣1,求fx)的定义域,并讨论fx)的单调性;

2)若函数fx)的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线顶点在原点,焦点在x轴上,且过点(44),焦点为F

1)求抛物线的焦点坐标和标准方程;

2P是抛物线上一动点,MPF的中点,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中作截面PQR,若PQCB的延长线交于点MRQDB的延长线交于点NRPDC的延长线交于点K.

1)求证:直线平面PQR

2)求证:点K在直线MN.

查看答案和解析>>

同步练习册答案